Suppr超能文献

使用图神经网络预测离子液体的熔点及可解释性

Prediction and Interpretability of Melting Points of Ionic Liquids Using Graph Neural Networks.

作者信息

Feng Haijun, Qin Lanlan, Zhang Bingxuan, Zhou Jian

机构信息

School of Computer Sciences, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China.

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.

出版信息

ACS Omega. 2024 Mar 28;9(14):16016-16025. doi: 10.1021/acsomega.3c09543. eCollection 2024 Apr 9.

Abstract

Ionic liquids (ILs) have wide and promising applications in fields such as chemical engineering, energy, and the environment. However, the melting points (MPs) of ILs are one of the most crucial properties affecting their applications. The MPs of ILs are affected by various factors, and tuning these in a laboratory is time-consuming and costly. Therefore, an accurate and efficient method is required to predict the desired MPs in the design of novel targeted ILs. In this study, three descriptor-based machine learning (DBML) models and eight graph neural network (GNN) models were proposed to predict the MPs of ILs. Fingerprints and molecular graphs were used to represent molecules for the DBML and GNNs, respectively. The GNN models demonstrated performance superior to that of the DBML models. Among all of the examined models, the graph convolutional model exhibited the best performance with high accuracy (root-mean-squared error = 37.06, mean absolute error = 28.79, and correlation coefficient = 0.76). Benefiting from molecular graph representation, we built a GNN-based interpretable model to reveal the atomistic contribution to the MPs of ILs using a data-driven procedure. According to our interpretable model, amino groups, S, N, and P would increase the MPs of ILs, while the negatively charged halogen atoms, S, and N would decrease the MPs of ILs. The results of this study provide new insight into the rapid screening and synthesis of targeted ILs with appropriate MPs.

摘要

离子液体(ILs)在化学工程、能源和环境等领域有着广泛且前景广阔的应用。然而,离子液体的熔点是影响其应用的最关键特性之一。离子液体的熔点受多种因素影响,在实验室中对这些因素进行调整既耗时又昂贵。因此,在设计新型靶向离子液体时,需要一种准确有效的方法来预测所需的熔点。在本研究中,提出了三种基于描述符的机器学习(DBML)模型和八种图神经网络(GNN)模型来预测离子液体的熔点。指纹和分子图分别用于表示DBML和GNN的分子。GNN模型表现出优于DBML模型的性能。在所有测试模型中,图卷积模型表现最佳,具有高精度(均方根误差 = 37.06,平均绝对误差 = 28.79,相关系数 = 0.76)。受益于分子图表示,我们构建了一个基于GNN的可解释模型,通过数据驱动的过程揭示原子对离子液体熔点的贡献。根据我们的可解释模型,氨基、S、N和P会提高离子液体的熔点,而带负电荷的卤素原子、S和N会降低离子液体的熔点。本研究结果为快速筛选和合成具有合适熔点的靶向离子液体提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7615/11007696/a9ed17ee2eb1/ao3c09543_0001.jpg

相似文献

1
Prediction and Interpretability of Melting Points of Ionic Liquids Using Graph Neural Networks.
ACS Omega. 2024 Mar 28;9(14):16016-16025. doi: 10.1021/acsomega.3c09543. eCollection 2024 Apr 9.
2
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction.
J Phys Chem B. 2023 Dec 14;127(49):10542-10555. doi: 10.1021/acs.jpcb.3c05521. Epub 2023 Nov 28.
3
Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions.
Anal Chim Acta. 2023 Mar 1;1244:340558. doi: 10.1016/j.aca.2022.340558. Epub 2022 Nov 3.
4
Advancing Ionic Liquid Research with pSCNN: A Novel Approach for Accurate Normal Melting Temperature Predictions.
ACS Omega. 2024 Jul 8;9(29):31694-31702. doi: 10.1021/acsomega.4c02393. eCollection 2024 Jul 23.
5
Improved GNNs for Log  Prediction by Transferring Knowledge from Low-Fidelity Data.
J Chem Inf Model. 2023 Apr 24;63(8):2345-2359. doi: 10.1021/acs.jcim.2c01564. Epub 2023 Mar 31.
6
Multiphysical graph neural network (MP-GNN) for COVID-19 drug design.
Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac231.
7
MD-GNN: A mechanism-data-driven graph neural network for molecular properties prediction and new material discovery.
J Mol Graph Model. 2023 Sep;123:108506. doi: 10.1016/j.jmgm.2023.108506. Epub 2023 May 9.
8
Conductivity prediction model for ionic liquids using machine learning.
J Chem Phys. 2022 Jun 7;156(21):214505. doi: 10.1063/5.0089568.

本文引用的文献

1
Enhanced Electrical Properties and Impact Strength of Phenolic Formaldehyde Resin Using Silanized Graphene and Ionic Liquid.
ACS Omega. 2023 Dec 19;9(1):294-303. doi: 10.1021/acsomega.3c05198. eCollection 2024 Jan 9.
2
Exploring the Possibility of Machine Learning for Predicting Ionic Conductivity of Solid-State Electrolytes.
ACS Omega. 2023 Apr 26;8(18):16419-16427. doi: 10.1021/acsomega.3c01400. eCollection 2023 May 9.
3
A Perspective on Explanations of Molecular Prediction Models.
J Chem Theory Comput. 2023 Apr 25;19(8):2149-2160. doi: 10.1021/acs.jctc.2c01235. Epub 2023 Mar 27.
4
Attention-Based Graph Neural Network for Molecular Solubility Prediction.
ACS Omega. 2023 Jan 12;8(3):3236-3244. doi: 10.1021/acsomega.2c06702. eCollection 2023 Jan 24.
5
Predictive modeling of antibacterial activity of ionic liquids by machine learning methods.
Comput Biol Chem. 2022 Dec;101:107775. doi: 10.1016/j.compbiolchem.2022.107775. Epub 2022 Oct 4.
6
Explainability in Graph Neural Networks: A Taxonomic Survey.
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5782-5799. doi: 10.1109/TPAMI.2022.3204236. Epub 2023 Apr 3.
7
Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast.
J Chem Inf Model. 2022 Jun 13;62(11):2713-2725. doi: 10.1021/acs.jcim.2c00495. Epub 2022 May 31.
8
Benchmarks for interpretation of QSAR models.
J Cheminform. 2021 May 26;13(1):41. doi: 10.1186/s13321-021-00519-x.
10
Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism.
J Med Chem. 2020 Aug 27;63(16):8749-8760. doi: 10.1021/acs.jmedchem.9b00959. Epub 2019 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验