Suppr超能文献

利用pSCNN推进离子液体研究:一种准确预测正常熔点温度的新方法。

Advancing Ionic Liquid Research with pSCNN: A Novel Approach for Accurate Normal Melting Temperature Predictions.

作者信息

Liang Tao, Liu Wei, Tan Kai, Wu Anan, Lu Xin

机构信息

State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Departmental of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

出版信息

ACS Omega. 2024 Jul 8;9(29):31694-31702. doi: 10.1021/acsomega.4c02393. eCollection 2024 Jul 23.

Abstract

Ionic liquids (ILs), known for their distinct and tunable properties, offer a broad spectrum of potential applications across various fields, including chemistry, materials science, and energy storage. However, practical applications of ILs are often limited by their unfavorable physicochemical properties. Experimental screening becomes impractical due to the vast number of potential IL combinations. Therefore, the development of a robust and efficient model for predicting the IL properties is imperative. As the defining feature, it is of practice significance to establish an accurate yet efficient model to predict the normal melting point of IL ( ), which may facilitate the discovery and design of novel ILs for specific applications. In this study, we presented a pseudo-Siamese convolution neural network (pSCNN) inspired by SCNN and focused on the . Utilizing a data set of 3098 ILs, we systematically assess various deep learning models (ANN, pSCNN, and Transformer-CNF), along with molecular descriptors (ECFP fingerprint and Mordred properties), for their performance in predicting the of ILs. Remarkably, among the investigated modeling schemes, the pSCNN, coupled with filtered Mordred descriptors, demonstrates superior performance, yielding mean absolute error (MAE) and root-mean-square error (RMSE) values of 24.36 and 31.56 °C, respectively. Feature analysis further highlights the effectiveness of the pSCNN model. Moreover, the pSCNN method, with a pair of inputs, can be extended beyond ionic liquid melting point prediction.

摘要

离子液体(ILs)以其独特且可调节的性质而闻名,在包括化学、材料科学和储能在内的各个领域都有着广泛的潜在应用。然而,离子液体的实际应用常常受到其不利的物理化学性质的限制。由于潜在的离子液体组合数量众多,实验筛选变得不切实际。因此,开发一个强大且高效的预测离子液体性质的模型势在必行。作为其决定性特征,建立一个准确而高效的预测离子液体正常熔点( )的模型具有实际意义,这可能有助于发现和设计用于特定应用的新型离子液体。在本研究中,我们提出了一种受SCNN启发的伪暹罗卷积神经网络(pSCNN),并专注于 。利用一个包含3098种离子液体的数据集,我们系统地评估了各种深度学习模型(人工神经网络、pSCNN和Transformer-CNF)以及分子描述符(ECFP指纹和Mordred性质)在预测离子液体 的性能。值得注意的是,在所研究的建模方案中,结合经过筛选的Mordred描述符的pSCNN表现出卓越的性能,其平均绝对误差(MAE)和均方根误差(RMSE)分别为24.36和31.56°C。特征分析进一步突出了pSCNN模型的有效性。此外,具有一对输入的pSCNN方法可以扩展到离子液体熔点预测之外。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/11270577/326e7059b520/ao4c02393_0001.jpg

相似文献

1
Advancing Ionic Liquid Research with pSCNN: A Novel Approach for Accurate Normal Melting Temperature Predictions.
ACS Omega. 2024 Jul 8;9(29):31694-31702. doi: 10.1021/acsomega.4c02393. eCollection 2024 Jul 23.
2
Prediction and Interpretability of Melting Points of Ionic Liquids Using Graph Neural Networks.
ACS Omega. 2024 Mar 28;9(14):16016-16025. doi: 10.1021/acsomega.3c09543. eCollection 2024 Apr 9.
3
Expeditious Discovery of Small-Molecule Thermoresponsive Ionic Liquid Materials: A Review.
Molecules. 2023 Sep 27;28(19):6817. doi: 10.3390/molecules28196817.
5
A density functional theory based approach for predicting melting points of ionic liquids.
Phys Chem Chem Phys. 2017 Feb 1;19(5):4114-4124. doi: 10.1039/c6cp08403f.
7
Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies.
J Am Chem Soc. 2006 Oct 18;128(41):13427-34. doi: 10.1021/ja0619612.
9
Prediction of CO solubility in Ionic liquids for CO capture using deep learning models.
Sci Rep. 2024 Jun 26;14(1):14730. doi: 10.1038/s41598-024-65499-y.

本文引用的文献

1
Deep Learning-Based Method for Compound Identification in NMR Spectra of Mixtures.
Molecules. 2022 Jun 7;27(12):3653. doi: 10.3390/molecules27123653.
2
Connecting chemistry and biology through molecular descriptors.
Curr Opin Chem Biol. 2022 Feb;66:102090. doi: 10.1016/j.cbpa.2021.09.001. Epub 2021 Oct 6.
3
Siamese Recurrent Neural Network with a Self-Attention Mechanism for Bioactivity Prediction.
ACS Omega. 2021 Apr 15;6(16):11086-11094. doi: 10.1021/acsomega.1c01266. eCollection 2021 Apr 27.
4
State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis.
Nat Commun. 2020 Nov 4;11(1):5575. doi: 10.1038/s41467-020-19266-y.
7
The curse(s) of dimensionality.
Nat Methods. 2018 Jun;15(6):399-400. doi: 10.1038/s41592-018-0019-x.
8
Mordred: a molecular descriptor calculator.
J Cheminform. 2018 Feb 6;10(1):4. doi: 10.1186/s13321-018-0258-y.
9
Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids.
Chem Rev. 2017 May 24;117(10):6696-6754. doi: 10.1021/acs.chemrev.6b00528. Epub 2017 Jan 31.
10
Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices.
Chem Rev. 2017 May 24;117(10):7190-7239. doi: 10.1021/acs.chemrev.6b00504. Epub 2017 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验