Liang Tao, Liu Wei, Tan Kai, Wu Anan, Lu Xin
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Departmental of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
ACS Omega. 2024 Jul 8;9(29):31694-31702. doi: 10.1021/acsomega.4c02393. eCollection 2024 Jul 23.
Ionic liquids (ILs), known for their distinct and tunable properties, offer a broad spectrum of potential applications across various fields, including chemistry, materials science, and energy storage. However, practical applications of ILs are often limited by their unfavorable physicochemical properties. Experimental screening becomes impractical due to the vast number of potential IL combinations. Therefore, the development of a robust and efficient model for predicting the IL properties is imperative. As the defining feature, it is of practice significance to establish an accurate yet efficient model to predict the normal melting point of IL ( ), which may facilitate the discovery and design of novel ILs for specific applications. In this study, we presented a pseudo-Siamese convolution neural network (pSCNN) inspired by SCNN and focused on the . Utilizing a data set of 3098 ILs, we systematically assess various deep learning models (ANN, pSCNN, and Transformer-CNF), along with molecular descriptors (ECFP fingerprint and Mordred properties), for their performance in predicting the of ILs. Remarkably, among the investigated modeling schemes, the pSCNN, coupled with filtered Mordred descriptors, demonstrates superior performance, yielding mean absolute error (MAE) and root-mean-square error (RMSE) values of 24.36 and 31.56 °C, respectively. Feature analysis further highlights the effectiveness of the pSCNN model. Moreover, the pSCNN method, with a pair of inputs, can be extended beyond ionic liquid melting point prediction.
离子液体(ILs)以其独特且可调节的性质而闻名,在包括化学、材料科学和储能在内的各个领域都有着广泛的潜在应用。然而,离子液体的实际应用常常受到其不利的物理化学性质的限制。由于潜在的离子液体组合数量众多,实验筛选变得不切实际。因此,开发一个强大且高效的预测离子液体性质的模型势在必行。作为其决定性特征,建立一个准确而高效的预测离子液体正常熔点( )的模型具有实际意义,这可能有助于发现和设计用于特定应用的新型离子液体。在本研究中,我们提出了一种受SCNN启发的伪暹罗卷积神经网络(pSCNN),并专注于 。利用一个包含3098种离子液体的数据集,我们系统地评估了各种深度学习模型(人工神经网络、pSCNN和Transformer-CNF)以及分子描述符(ECFP指纹和Mordred性质)在预测离子液体 的性能。值得注意的是,在所研究的建模方案中,结合经过筛选的Mordred描述符的pSCNN表现出卓越的性能,其平均绝对误差(MAE)和均方根误差(RMSE)分别为24.36和31.56°C。特征分析进一步突出了pSCNN模型的有效性。此外,具有一对输入的pSCNN方法可以扩展到离子液体熔点预测之外。