Wang Lianwen, Liu Zhijun, Guo Caihong, Li Yong, Zhang Xinan
Department of Mathematics, Hubei Minzu University, Enshi 445000, P.R.China.
Enshi Special Care Hospital, Enshi 445000, P.R.China.
Appl Math Comput. 2021 Feb 1;390:125648. doi: 10.1016/j.amc.2020.125648. Epub 2020 Sep 10.
This work applies a novel geometric criterion for global stability of nonlinear autonomous differential equations generalized by Lu and Lu (2017) to establish global threshold dynamics for several SVEIS epidemic models with temporary immunity, incorporating saturated incidence and nonmonotone incidence with psychological effect, and an SVEIS model with saturated incidence and partial temporary immunity. Incidentally, global stability for the SVEIS models with saturated incidence in Cai and Li (2009), Sahu and Dhar (2012) is completely solved. Furthermore, employing the DEDiscover simulation tool, the parameters in Sahu and Dhar'model are estimated with the 2009-2010 pandemic H1N1 case data in Hong Kong China, and it is validated that the vaccination programme indeed avoided subsequent potential outbreak waves of the pandemic. Finally, global sensitivity analysis reveals that multiple control measures should be utilized jointly to cut down the peak of the waves dramatically and delay the arrival of the second wave, thereinto timely vaccination is particularly effective.
本文应用了由Lu和Lu(2017)推广的一种针对非线性自治微分方程全局稳定性的新颖几何准则,为几个具有暂时免疫力的SVEIS流行病模型建立全局阈值动态,其中纳入了饱和发病率和具有心理效应的非单调发病率,以及一个具有饱和发病率和部分暂时免疫力的SVEIS模型。顺便提一下,Cai和Li(2009)、Sahu和Dhar(2012)中具有饱和发病率的SVEIS模型的全局稳定性问题得到了完全解决。此外,使用DEDiscover模拟工具,利用中国香港2009 - 2010年甲型H1N1流感大流行病例数据对Sahu和Dhar模型中的参数进行了估计,并验证了疫苗接种计划确实避免了该大流行随后可能出现的爆发浪潮。最后,全局敏感性分析表明,应联合使用多种控制措施以大幅降低浪潮峰值并延迟第二波的到来,其中及时接种疫苗尤为有效。