National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States.
ACS Nano. 2020 Oct 27;14(10):12982-12992. doi: 10.1021/acsnano.0c04266. Epub 2020 Sep 22.
Multiphoton polymer cross-linking evolves as the core process behind high-resolution additive microfabrication with soft materials for implantable/wearable electronics, tissue engineering, microrobotics, biosensing, drug delivery, Electrons and soft X-rays, in principle, can offer even higher resolution and printing rates. However, these powerful lithographic tools are difficult to apply to vacuum incompatible liquid precursor solutions used in continuous additive fabrication. In this work, using biocompatible hydrogel as a model soft material, we demonstrate high-resolution in-liquid polymer cross-linking using scanning electron and X-ray microscopes. The approach augments the existing solid-state electron/X-ray lithography and beam-induced deposition techniques with a wider class of possible chemical reactions, precursors, and functionalities. We discuss the focused beam cross-linking mechanism, the factors affecting the ultimate feature size, and layer-by-layer printing possibilities. The potential of this technology is demonstrated on a few practically important applications such as in-liquid encapsulation of nanoparticles for plasmonic sensing and interfacing of viable cells with hydrogel electrodes.
多光子聚合物交联是一种核心工艺,它为可植入/可穿戴电子、组织工程、微机器人、生物传感、药物输送等领域的软材料的高分辨率添加剂微制造提供了支持。电子和软 X 射线原则上可以提供更高的分辨率和打印速度。然而,这些强大的光刻工具很难应用于连续添加剂制造中不兼容真空的液体前体溶液。在这项工作中,我们使用生物相容性水凝胶作为模型软材料,展示了使用扫描电子显微镜和 X 射线显微镜进行的高分辨率液相聚合物交联。该方法通过更广泛的化学反应、前体和功能,扩展了现有的固态电子/X 射线光刻和束诱导沉积技术。我们讨论了聚焦光束交联机制、影响最终特征尺寸的因素以及逐层打印的可能性。这项技术的潜力在一些实际重要的应用中得到了证明,例如用于等离子体传感的纳米粒子的液相封装以及活细胞与水凝胶电极的界面。