MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Science. 2018 Dec 14;362(6420):1281-1285. doi: 10.1126/science.aau5119.
Lithographic nanofabrication is often limited to successive fabrication of two-dimensional (2D) layers. We present a strategy for the direct assembly of 3D nanomaterials consisting of metals, semiconductors, and biomolecules arranged in virtually any 3D geometry. We used hydrogels as scaffolds for volumetric deposition of materials at defined points in space. We then optically patterned these scaffolds in three dimensions, attached one or more functional materials, and then shrank and dehydrated them in a controlled way to achieve nanoscale feature sizes in a solid substrate. We demonstrate that our process, Implosion Fabrication (ImpFab), can directly write highly conductive, 3D silver nanostructures within an acrylic scaffold via volumetric silver deposition. Using ImpFab, we achieve resolutions in the tens of nanometers and complex, non-self-supporting 3D geometries of interest for optical metamaterials.
光刻纳米制造通常局限于二维(2D)层的连续制造。我们提出了一种策略,用于直接组装由金属、半导体和生物分子组成的 3D 纳米材料,这些材料可以按照任何 3D 几何形状进行排列。我们使用水凝胶作为支架,在空间的确定点进行材料的体积沉积。然后,我们对这些支架进行三维光学图案化,附着一个或多个功能材料,然后以受控的方式收缩和脱水,以在固体基底上实现纳米级的特征尺寸。我们证明,我们的工艺,内爆制造(Implosion Fabrication,ImpFab),可以通过体积银沉积在丙烯酸支架内直接写入高度导电的 3D 银纳米结构。使用 ImpFab,我们实现了数十纳米的分辨率和复杂的、非自支撑的 3D 几何形状,这些形状对于光学超材料很有意义。