Suppr超能文献

CRISPR/Cas9 编辑的 提供了通过调节 ROS 动态平衡对 ABA 和渗透胁迫不敏感。

CRISPR/Cas9 edited of offers ABA and osmotic stress insensitivity by modulation of ROS homeostasis.

机构信息

Department of Biology and Food Science, Shangqiu Normal University , Shangqiu, Henan, China.

State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University , Kaifeng, Henan, China.

出版信息

Plant Signal Behav. 2020 Dec 1;15(12):1816321. doi: 10.1080/15592324.2020.1816321. Epub 2020 Sep 16.

Abstract

The role of Heat Shock Transcription Factor 6 ( & ) in response to abiotic stresses such as ABA, drought, salinity, drought, and osmotic stress is individually well established. Unfortunately, the functional redundancy between the and as well as the consequences of simultaneous editing of both in response to aforementioned stresses remains elusive. Therefore, this study was designed with the aim of addressing whether there is any functional redundancy between and as well as to decipher their role in abiotic stresses tolerance in , by using the CRISPR-Cas9. We have generated the single () as well as double mutants ( and ) of and with higher frequencies of deletion, insertion, and substitution. The phenotypic characterization of generated double and single mutants under abiotic stresses such as ABA, mannitol, and NaCl identified double mutants more tolerant to subjected abiotic stresses than those of their single mutants. It warrants mentioning that we have identified that and also involved in other major ABA responses, including ABA-inhibited seed germination, stomatal movement, and water loss. In addition to the above, the simultaneous editing of and lead to a reduced ROS accumulation, accompanied by increased expression of much abiotic stress and ABA-responsive genes, including involved in regulation of ROS level. In conclusion, these results suggest that and may offer abiotic stress tolerance by regulating the ROS homeostasis in plants.

摘要

热休克转录因子 6( & )在应对非生物胁迫方面的作用,如 ABA、干旱、盐度、干旱和渗透胁迫,已经得到了很好的证实。不幸的是, 与 之间的功能冗余,以及同时编辑这两者以应对上述胁迫的后果仍然难以捉摸。因此,本研究旨在探讨 与 之间是否存在功能冗余,并利用 CRISPR-Cas9 技术阐明它们在拟南芥非生物胁迫耐受性中的作用。我们已经成功地生成了 与 的单突变体( )和双突变体( 和 ),并且这些突变体的删除、插入和取代频率更高。对生成的双突变体和单突变体在 ABA、甘露醇和 NaCl 等非生物胁迫下的表型特征进行了分析,结果表明双突变体比其单突变体更能耐受所施加的非生物胁迫。值得一提的是,我们还发现 与 还参与了其他主要的 ABA 反应,包括 ABA 抑制种子萌发、气孔运动和水分损失。除此之外,同时编辑 与 会导致 ROS 积累减少,同时增加许多非生物胁迫和 ABA 响应基因的表达,包括参与 ROS 水平调节的基因。总之,这些结果表明, 与 可能通过调节植物中的 ROS 稳态来提供非生物胁迫耐受性。

相似文献

1
CRISPR/Cas9 edited of offers ABA and osmotic stress insensitivity by modulation of ROS homeostasis.
Plant Signal Behav. 2020 Dec 1;15(12):1816321. doi: 10.1080/15592324.2020.1816321. Epub 2020 Sep 16.
2
The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses.
Plant Physiol. 2016 Oct;172(2):1182-1199. doi: 10.1104/pp.16.00860. Epub 2016 Aug 4.
4
The FBA motif-containing protein AFBA1 acts as a novel positive regulator of ABA response in Arabidopsis.
Plant Cell Physiol. 2017 Mar 1;58(3):574-586. doi: 10.1093/pcp/pcx003.
5
A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis.
Plant Mol Biol. 2019 Mar;99(4-5):437-447. doi: 10.1007/s11103-019-00828-8. Epub 2019 Feb 2.
9
A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA.
Plant Cell Physiol. 2014 Nov;55(11):1892-904. doi: 10.1093/pcp/pcu118. Epub 2014 Sep 3.
10
The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses.
Plant Mol Biol. 2020 Mar;102(4-5):389-401. doi: 10.1007/s11103-019-00953-4. Epub 2020 Jan 1.

引用本文的文献

2
HS is involved in drought-mediated stomatal closure through PLDα1 in Arabidopsis.
Planta. 2024 May 4;259(6):142. doi: 10.1007/s00425-024-04421-2.
3
CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks.
Funct Integr Genomics. 2024 Mar 5;24(2):50. doi: 10.1007/s10142-024-01314-1.
6
Regulatory network established by transcription factors transmits drought stress signals in plant.
Stress Biol. 2022 Jul 14;2(1):26. doi: 10.1007/s44154-022-00048-z.
8
Combined transcriptomic and metabolomic analyses of high temperature stress response of quinoa seedlings.
BMC Plant Biol. 2023 Jun 1;23(1):292. doi: 10.1186/s12870-023-04310-y.
9
Genome-wide analysis of HSF family and overexpression of confers salt tolerance in .
Front Plant Sci. 2023 Apr 26;14:1160102. doi: 10.3389/fpls.2023.1160102. eCollection 2023.
10
Protein Profiling of during Mesquite Infection.
Plants (Basel). 2023 Jan 19;12(3):464. doi: 10.3390/plants12030464.

本文引用的文献

2
Heat Shock Factor HsfA1a Is Essential for Gene-Mediated Nematode Resistance and Triggers HO Production.
Plant Physiol. 2018 Mar;176(3):2456-2471. doi: 10.1104/pp.17.01281. Epub 2018 Jan 16.
3
Genome Editing in Cotton with the CRISPR/Cas9 System.
Front Plant Sci. 2017 Aug 3;8:1364. doi: 10.3389/fpls.2017.01364. eCollection 2017.
4
The extent of Ds1 transposon to enrich transcriptomes and proteomes by exonization.
Bot Stud. 2013 Dec;54(1):14. doi: 10.1186/1999-3110-54-14. Epub 2013 Aug 21.
5
Progress in Genome Editing Technology and Its Application in Plants.
Front Plant Sci. 2017 Feb 14;8:177. doi: 10.3389/fpls.2017.00177. eCollection 2017.
6
An Efficient Visual Screen for CRISPR/Cas9 Activity in .
Front Plant Sci. 2017 Jan 24;8:39. doi: 10.3389/fpls.2017.00039. eCollection 2017.
7
AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade.
Plant Physiol. 2017 Feb;173(2):1391-1408. doi: 10.1104/pp.16.01386. Epub 2016 Dec 2.
8
The heat-shock protein/chaperone network and multiple stress resistance.
Plant Biotechnol J. 2017 Apr;15(4):405-414. doi: 10.1111/pbi.12659. Epub 2017 Feb 23.
9
The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses.
Plant Physiol. 2016 Oct;172(2):1182-1199. doi: 10.1104/pp.16.00860. Epub 2016 Aug 4.
10
ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants.
Plant Physiol. 2016 Jul;171(3):1606-15. doi: 10.1104/pp.16.00434. Epub 2016 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验