Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, United States.
Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, United States.
Radiother Oncol. 2020 Dec;153:189-196. doi: 10.1016/j.radonc.2020.09.016. Epub 2020 Sep 13.
Brain metastases are manually contoured during stereotactic radiosurgery (SRS) treatment planning, which is time-consuming, potentially challenging, and laborious. The purpose of this study was to develop and investigate a 2-stage deep learning (DL) approach (MetNet) for brain metastasis segmentation in pre-treatment magnetic resonance imaging (MRI).
We retrospectively analyzed postcontrast 3D T1-weighted spoiled gradient echo MRIs from 934 patients who underwent SRS between August 2009 and August 2018. Neuroradiologists manually identified brain metastases in the MRIs. The treating radiation oncologist or physicist contoured the brain metastases. We constructed a 2-stage DL ensemble consisting of detection and segmentation models to segment the brain metastases on the MRIs. We evaluated the performance of MetNet by computing sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC) with respect to metastasis size, as well as free-response receiver operating characteristics.
The 934 patients (mean [±standard deviation] age 59 ± 13 years, 474 women) were randomly split into 80% training and 20% testing groups (748:186). For patients with metastases 1-52 mm (n = 766), 648 (85%) were detected and segmented with a mean segmentation DSC of 81% ± 15%. Patient-averaged sensitivity was 88% ± 19%, PPV was 58% ± 25%, and DSC was 85% ± 13% with 3 ± 3 false positives (FPs) per patient. When considering only metastases ≥6 mm, patient-averaged sensitivity was 99% ± 5%, PPV was 67% ± 28%, and DSC was 87% ± 13% with 1 ± 2 FPs per patient.
MetNet can segment brain metastases across a broad range of metastasis sizes with high sensitivity, low FPs, and high segmentation accuracy in postcontrast T1-weighted MRI, potentially aiding treatment planning for SRS.
脑转移瘤在立体定向放射外科(SRS)治疗计划中需要手动勾画,这既耗时,又具有挑战性,且费力。本研究的目的是开发并研究一种用于治疗前磁共振成像(MRI)中脑转移瘤分割的两阶段深度学习(DL)方法(MetNet)。
我们回顾性分析了 2009 年 8 月至 2018 年 8 月期间接受 SRS 治疗的 934 例患者的增强后 3D T1 加权扰相梯度回波 MRI。神经放射科医生手动识别 MRI 中的脑转移瘤。治疗放射肿瘤医生或物理学家勾画脑转移瘤。我们构建了一个两阶段的 DL 集成模型,包括检测和分割模型,用于分割 MRI 上的脑转移瘤。我们通过计算与转移瘤大小相关的灵敏度、阳性预测值(PPV)和 Dice 相似系数(DSC),以及自由响应接收者操作特征(ROC),来评估 MetNet 的性能。
934 例患者(平均[±标准差]年龄 59±13 岁,474 例女性)被随机分为 80%的训练组和 20%的测试组(748:186)。对于 1-52mm 的转移瘤患者(n=766),648 例(85%)被检测并分割,平均分割 DSC 为 81%±15%。患者平均灵敏度为 88%±19%,PPV 为 58%±25%,DSC 为 85%±13%,每个患者有 3±3 个假阳性(FP)。当仅考虑≥6mm 的转移瘤时,患者平均灵敏度为 99%±5%,PPV 为 67%±28%,DSC 为 87%±13%,每个患者有 1±2 个 FP。
MetNet 可以在广泛的转移瘤大小范围内分割脑转移瘤,具有高灵敏度、低 FP 和高分割准确性,在增强 T1 加权 MRI 中具有潜在的 SRS 治疗计划辅助作用。