Suppr超能文献

立体定向放射治疗后自动追踪脑转移瘤。

Automatically tracking brain metastases after stereotactic radiosurgery.

作者信息

Hsu Dylan G, Ballangrud Åse, Prezelski Kayla, Swinburne Nathaniel C, Young Robert, Beal Kathryn, Deasy Joseph O, Cerviño Laura, Aristophanous Michalis

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.

出版信息

Phys Imaging Radiat Oncol. 2023 Jun 1;27:100452. doi: 10.1016/j.phro.2023.100452. eCollection 2023 Jul.

Abstract

BACKGROUND AND PURPOSE

Patients with brain metastases (BMs) are surviving longer and returning for multiple courses of stereotactic radiosurgery. BMs are monitored after radiation with follow-up magnetic resonance (MR) imaging every 2-3 months. This study investigated whether it is possible to automatically track BMs on longitudinal imaging and quantify the tumor response after radiotherapy.

METHODS

The METRO process (MEtastasis Tracking with Repeated Observations was developed to automatically process patient data and track BMs. A longitudinal intrapatient registration method for T1 MR post-Gd was conceived and validated on 20 patients. Detections and volumetric measurements of BMs were obtained from a deep learning model. BM tracking was validated on 32 separate patients by comparing results with manual measurements of BM response and radiologists' assessments of new BMs. Linear regression and residual analysis were used to assess accuracy in determining tumor response and size change.

RESULTS

A total of 123 irradiated BMs and 38 new BMs were successfully tracked. 66 irradiated BMs were visible on follow-up imaging 3-9 months after radiotherapy. Comparing their longest diameter changes measured manually vs. METRO, the Pearson correlation coefficient was 0.88 (p < 0.001); the mean residual error was -8 ± 17%. The mean registration error was 1.5 ± 0.2 mm.

CONCLUSIONS

Automatic, longitudinal tracking of BMs using deep learning methods is feasible. In particular, the software system METRO fulfills a need to automatically track and quantify volumetric changes of BMs prior to, and in response to, radiation therapy.

摘要

背景与目的

脑转移瘤(BMs)患者的生存期延长,需要接受多疗程立体定向放射外科治疗。放疗后每2 - 3个月通过磁共振(MR)成像进行随访监测BMs。本研究调查了是否能够在纵向成像上自动追踪BMs并量化放疗后的肿瘤反应。

方法

开发了METRO流程(重复观察转移灶追踪)以自动处理患者数据并追踪BMs。构思了一种针对钆增强后T1 MR的患者内纵向配准方法,并在20例患者中进行了验证。通过深度学习模型获得BMs的检测和体积测量结果。通过将结果与BM反应的手动测量值和放射科医生对新BMs的评估结果进行比较,在32例不同患者中对BM追踪进行了验证。使用线性回归和残差分析来评估确定肿瘤反应和大小变化的准确性。

结果

共成功追踪了123个接受放疗的BMs和38个新的BMs。放疗后3 - 9个月的随访成像中可见66个接受放疗的BMs。比较手动测量与METRO测量的其最长直径变化,Pearson相关系数为0.88(p < 0.001);平均残差为 - 8 ± 17%。平均配准误差为1.5 ± 0.2毫米。

结论

使用深度学习方法对BMs进行自动纵向追踪是可行的。特别是,软件系统METRO满足了在放疗前和放疗后自动追踪和量化BMs体积变化的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a4/10500025/27a158fd5dab/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验