Suppr超能文献

基于序列的蛋白质构象转变行为预测。

Sequence-Based Prediction of Metamorphic Behavior in Proteins.

机构信息

Department of Chemistry, University of California, Davis, California.

School of Natural Sciences, University of California, Merced, California.

出版信息

Biophys J. 2020 Oct 6;119(7):1380-1390. doi: 10.1016/j.bpj.2020.07.034. Epub 2020 Aug 14.

Abstract

An increasing number of proteins have been demonstrated in recent years to adopt multiple three-dimensional folds with different functions. These metamorphic proteins are characterized by having two or more folds with significant differences in their secondary structure, in which each fold is stabilized by a distinct local environment. So far, ∼90 metamorphic proteins have been identified in the Protein Databank, but we and others hypothesize that a far greater number of metamorphic proteins remain undiscovered. In this work, we introduce a computational model to predict metamorphic behavior in proteins using only knowledge of the sequence. In this model, secondary structure prediction programs are used to calculate diversity indices, which are measures of uncertainty in predicted secondary structure at each position in the sequence; these are then used to assign protein sequences as likely to be metamorphic versus monomorphic (i.e., having just one fold). We constructed a reference data set to train our classification method, which includes a novel compilation of 136 likely monomorphic proteins and a set of 201 metamorphic protein structures taken from the literature. Our model is able to classify proteins as metamorphic versus monomorphic with a Matthews correlation coefficient of ∼0.36 and true positive/true negative rates of ∼65%/80%, suggesting that it is possible to predict metamorphic behavior in proteins using only sequence information.

摘要

近年来,越来越多的蛋白质被证明可以采用具有不同功能的多种三维折叠。这些变形蛋白质的特征是具有两个或更多折叠,其二级结构有显著差异,其中每个折叠都由独特的局部环境稳定。到目前为止,在蛋白质数据库中已经鉴定了约 90 种变形蛋白,但我们和其他人假设,还有更多的变形蛋白尚未被发现。在这项工作中,我们引入了一种计算模型,仅使用序列知识来预测蛋白质的变形行为。在该模型中,使用二级结构预测程序来计算多样性指数,这是序列中每个位置预测二级结构不确定性的度量;然后,这些指数用于将蛋白质序列分配为可能是变形的还是单态的(即只有一种折叠)。我们构建了一个参考数据集来训练我们的分类方法,其中包括一个新的 136 种可能的单态蛋白和一组 201 种从文献中提取的变形蛋白结构。我们的模型能够将蛋白质分类为变形和单态,马修斯相关系数约为 0.36,真阳性/真阴性率约为 65%/80%,这表明仅使用序列信息就有可能预测蛋白质的变形行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd7/7567988/2f4cc339bb3a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验