Ni Qiufen, Guo Jianxiong, Huang Chuanhe, Wu Weili
School of Computer Science, Wuhan University, China.
Collaborative Innovation Center of Geospatial Technology, Wuhan, China.
Theor Comput Sci. 2020 Nov 6;840:257-269. doi: 10.1016/j.tcs.2020.08.030. Epub 2020 Sep 10.
Social networks provide us a convenient platform to communicate and share information or ideas with each other, but it also causes many negative effects at the same time, such as, the spread of misinformation or rumor in social networks may cause public panic and even serious economic or political crisis. In this paper, we propose a Community-based Rumor Blocking Problem (CRBMP), i.e., selecting a set of seed users from all communities as protectors with the constraint of budget such that the expected number of users eventually not being influenced by rumor sources is maximized. We consider the community structure in social networks and solve our problem in two stages, in the first stage, we allocate budget for all the communities, this sub-problem whose objective function is proved to be monotone and DR-submodular, so we can use the method of submodular function maximization on an integer lattice, which is different from most of the existing work with the submodular function over a set function. Then a greedy community budget allocation algorithm is devised to get an approximation ratio; we also propose a speed-up greedy algorithm which greatly reduces the time complexity for the community budget allocation and can get an approximation guarantee meanwhile. Next we solve the Protector Seed Selection (PSS) problem in the second stage after we obtained the budget allocation vector for communities, we greedily choose protectors for each community with the budget constraints to achieve the maximization of the influence of protectors. The greedy algorithm for PSS problem can achieve a 1/2 approximation guarantee. We also consider a special case where the rumor just originates from one community and does not spread out of its own community before the protectors are selected, the proposed algorithm can reduce the computational cost than the general greedy algorithm since we remove the uninfected communities. Finally, we conduct extensive experiments on three real world data sets, the results demonstrate the effectiveness of the proposed algorithm and its superiority over other methods.
社交网络为我们提供了一个方便的平台,使我们能够相互交流并分享信息或想法,但与此同时,它也会引发许多负面影响。例如,社交网络中错误信息或谣言的传播可能会导致公众恐慌,甚至引发严重的经济或政治危机。在本文中,我们提出了一个基于社区的谣言阻断问题(CRBMP),即从所有社区中选择一组种子用户作为保护者,并受预算限制,使得最终不受谣言源影响的用户预期数量最大化。我们考虑社交网络中的社区结构,并分两个阶段解决我们的问题。在第一阶段,我们为所有社区分配预算,这个子问题的目标函数被证明是单调且DR - 次模的,所以我们可以在整数格上使用次模函数最大化的方法,这与大多数现有工作中关于集合函数的次模函数不同。然后设计了一种贪心社区预算分配算法以获得一个近似比率;我们还提出了一种加速贪心算法,它大大降低了社区预算分配的时间复杂度,同时能获得一个近似保证。接下来,在我们获得社区的预算分配向量后,在第二阶段解决保护者种子选择(PSS)问题,我们在预算约束下为每个社区贪心选择保护者,以实现保护者影响力的最大化。PSS问题的贪心算法可以实现1/2的近似保证。我们还考虑了一种特殊情况,即谣言仅起源于一个社区,并且在选择保护者之前不会传播到其自身社区之外,由于我们去除了未受感染的社区,所提出的算法比一般贪心算法能降低计算成本。最后,我们在三个真实世界数据集上进行了广泛的实验,结果证明了所提出算法的有效性及其相对于其他方法的优越性。