Suppr超能文献

基于深度强化学习的社交网络谣言影响最小化方法

Deep reinforcement learning-based approach for rumor influence minimization in social networks.

作者信息

Jiang Jiajian, Chen Xiaoliang, Huang Zexia, Li Xianyong, Du Yajun

机构信息

School of Computer and Software Engineering, Xihua University, Chengdu, 610039 People's Republic of China.

Department of Computer Science and Operations Research, University of Montreal, Montreal, QC H3C3J7 Canada.

出版信息

Appl Intell (Dordr). 2023 Apr 4:1-18. doi: 10.1007/s10489-023-04555-y.

Abstract

Spreading malicious rumors on social networks such as Facebook, Twitter, and WeChat can trigger political conflicts, sway public opinion, and cause social disruption. A rumor can spread rapidly across a network and can be difficult to control once it has gained traction.Rumor influence minimization (RIM) is a central problem in information diffusion and network theory that involves finding ways to minimize rumor spread within a social network. Existing research on the RIM problem has focused on blocking the actions of influential users who can drive rumor propagation. These traditional static solutions do not adequately capture the dynamics and characteristics of rumor evolution from a global perspective. A deep reinforcement learning strategy that takes into account a wide range of factors may be an effective way of addressing the RIM challenge. This study introduces the dynamic rumor influence minimization (DRIM) problem, a step-by-step discrete time optimization method for controlling rumors. In addition, we provide a dynamic rumor-blocking approach, namely RLDB, based on deep reinforcement learning. First, a static rumor propagation model (SRPM) and a dynamic rumor propagation model (DRPM) based on of independent cascade patterns are presented. The primary benefit of the DPRM is that it can dynamically adjust the probability matrix according to the number of individuals affected by rumors in a social network, thereby improving the accuracy of rumor propagation simulation. Second, the RLDB strategy identifies the users to block in order to minimize rumor influence by observing the dynamics of user states and social network architectures. Finally, we assess the blocking model using four real-world datasets with different sizes. The experimental results demonstrate the superiority of the proposed approach on heuristics such as out-degree(OD), betweenness centrality(BC), and PageRank(PR).

摘要

在脸书、推特和微信等社交网络上传播恶意谣言可能引发政治冲突、左右舆论并造成社会混乱。谣言能够在网络中迅速传播,一旦形成气候就难以控制。谣言影响最小化(RIM)是信息传播和网络理论中的一个核心问题,涉及找到在社交网络中最小化谣言传播的方法。现有关于RIM问题的研究主要集中在阻止能够推动谣言传播的有影响力用户的行为。这些传统的静态解决方案无法从全局角度充分捕捉谣言演变的动态和特征。一种考虑多种因素的深度强化学习策略可能是应对RIM挑战的有效方法。本研究引入了动态谣言影响最小化(DRIM)问题,这是一种用于控制谣言的逐步离散时间优化方法。此外,我们基于深度强化学习提供了一种动态谣言阻断方法,即RLDB。首先,提出了基于独立级联模式的静态谣言传播模型(SRPM)和动态谣言传播模型(DRPM)。DPRM的主要优点是它可以根据社交网络中受谣言影响的个体数量动态调整概率矩阵,从而提高谣言传播模拟的准确性。其次,RLDB策略通过观察用户状态和社交网络架构的动态来识别要阻断的用户,以最小化谣言影响。最后,我们使用四个不同规模的真实世界数据集评估阻断模型。实验结果证明了所提方法在诸如出度(OD)、介数中心性(BC)和PageRank(PR)等启发式方法上的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab71/10072046/6f46728596d3/10489_2023_4555_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验