Suppr超能文献

肝硬化患者术后死亡率的风险预测模型。

Risk Prediction Models for Post-Operative Mortality in Patients With Cirrhosis.

机构信息

Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.

Leonard David Institute of Health Economics, University of Pennsylvania, Philadelphia, PA.

出版信息

Hepatology. 2021 Jan;73(1):204-218. doi: 10.1002/hep.31558. Epub 2020 Dec 10.

Abstract

BACKGROUND AND AIMS

Patients with cirrhosis are at increased risk of postoperative mortality. Currently available tools to predict postoperative risk are suboptimally calibrated and do not account for surgery type. Our objective was to use population-level data to derive and internally validate cirrhosis surgical risk models.

APPROACH AND RESULTS

We conducted a retrospective cohort study using data from the Veterans Outcomes and Costs Associated with Liver Disease (VOCAL) cohort, which contains granular data on patients with cirrhosis from 128 U.S. medical centers, merged with the Veterans Affairs Surgical Quality Improvement Program (VASQIP) to identify surgical procedures. We categorized surgeries as abdominal wall, vascular, abdominal, cardiac, chest, or orthopedic and used multivariable logistic regression to model 30-, 90-, and 180-day postoperative mortality (VOCAL-Penn models). We compared model discrimination and calibration of VOCAL-Penn to the Mayo Risk Score (MRS), Model for End-Stage Liver Disease (MELD), Model for End-Stage Liver Disease-Sodium MELD-Na, and Child-Turcotte-Pugh (CTP) scores. We identified 4,712 surgical procedures in 3,785 patients with cirrhosis. The VOCAL-Penn models were derived and internally validated with excellent discrimination (30-day postoperative mortality C-statistic = 0.859; 95% confidence interval [CI], 0.809-0.909). Predictors included age, preoperative albumin, platelet count, bilirubin, surgery category, emergency indication, fatty liver disease, American Society of Anesthesiologists classification, and obesity. Model performance was superior to MELD, MELD-Na, CTP, and MRS at all time points (e.g., 30-day postoperative mortality C-statistic for MRS = 0.766; 95% CI, 0.676-0.855) in terms of discrimination and calibration.

CONCLUSIONS

The VOCAL-Penn models substantially improve postoperative mortality predictions in patients with cirrhosis. These models may be applied in practice to improve preoperative risk stratification and optimize patient selection for surgical procedures (www.vocalpennscore.com).

摘要

背景与目的

肝硬化患者术后死亡风险增加。目前可用的预测术后风险的工具校准效果不佳,且未考虑手术类型。我们的目标是利用人群数据推导并内部验证肝硬化手术风险模型。

方法与结果

我们使用退伍军人肝脏疾病相关结果和费用(VOCAL)队列的数据进行了回顾性队列研究,该队列包含来自美国 128 家医疗中心的肝硬化患者的详细数据,并与退伍军人事务部手术质量改进计划(VASQIP)合并以确定手术程序。我们将手术分为腹壁、血管、腹部、心脏、胸部或骨科,并使用多变量逻辑回归对 30 天、90 天和 180 天的术后死亡率(VOCAL-Penn 模型)进行建模。我们将 VOCAL-Penn 模型的区分度和校准度与 Mayo 风险评分(MRS)、终末期肝病模型(MELD)、终末期肝病钠模型(MELD-Na)和 Child-Turcotte-Pugh(CTP)评分进行了比较。我们在 3785 例肝硬化患者中确定了 4712 例手术。VOCAL-Penn 模型经过推导和内部验证,具有出色的区分度(30 天术后死亡率的 C 统计量为 0.859;95%置信区间[CI]为 0.809-0.909)。预测因素包括年龄、术前白蛋白、血小板计数、胆红素、手术类别、紧急指征、脂肪肝疾病、美国麻醉师协会分类和肥胖。在所有时间点(例如,MRS 的 30 天术后死亡率 C 统计量为 0.766;95%CI 为 0.676-0.855),模型性能在区分度和校准度方面均优于 MELD、MELD-Na、CTP 和 MRS。

结论

VOCAL-Penn 模型大大提高了肝硬化患者术后死亡风险的预测能力。这些模型可应用于实践中,以改善术前风险分层并优化手术程序的患者选择(www.vocalpennscore.com)。

相似文献

引用本文的文献

5
Pre-Operative Assessment of Patients with Cirrhosis for Extrahepatic Surgery.肝硬化患者肝外手术的术前评估
Curr Hepatol Rep. 2025;24(1):25. doi: 10.1007/s11901-025-00697-4. Epub 2025 Jun 4.

本文引用的文献

2
The imperative for an updated cirrhosis surgical risk score.需要更新肝硬化手术风险评分。
Ann Hepatol. 2020 Jul-Aug;19(4):341-343. doi: 10.1016/j.aohep.2020.04.005. Epub 2020 May 15.
5
Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis.慢性肝病和肝硬化的当代流行病学。
Clin Gastroenterol Hepatol. 2020 Nov;18(12):2650-2666. doi: 10.1016/j.cgh.2019.07.060. Epub 2019 Aug 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验