Jin Jun, Yu Lei, Zhou Qingshan, Du Qian, Nie Xiangrong, Yin Hai-Yan, Gu Wan-Jie
Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China.
Front Cell Infect Microbiol. 2025 Jul 7;15:1569748. doi: 10.3389/fcimb.2025.1569748. eCollection 2025.
Bloodstream infections (BSI) are a leading cause of sepsis and death in intensive care unit (ICU). Traditional severity scores, including the Sequential Organ Failure Assessment (SOFA), Acute Physiology Score III (APSIII), and Simplified Acute Physiology Score II (SAPS II), exhibit limitations in effectively predicting mortality among BSI patients, primarily due to their reliance on a narrow range of clinical variables. This study aimed to develop and validate a comprehensive nomogram model for 28-day all-cause mortality prediction in BSI patients.
A retrospective cohort study was conducted using data from 3,615 patients with positive blood cultures from the MIMIC-IV database, divided into training (n=2,532) and validation (n=1,083) cohorts. Through a two-step variable selection process combining LASSO regression and Boruta algorithm, we identified 12 predictive variables from 58 initial clinical parameters. The model's performance was evaluated using AUROC, net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA).
The nomogram demonstrated superior discrimination (AUROC: 0.760 . 0.671, P<0.001 for SOFA; 0.760 . 0.705, P<0.001 for APSIII; 0.760 . 0.707, P<0.001 for SAPS II) in the training cohort, with consistent performance in the validation cohort (AUROC: 0.742). Key predictors identified in our model included the need for mechanical ventilation, the presence of malignancy, platelet count, and scores on the Glasgow Coma Scale (GCS). The model showed significant improvements in NRI and IDI, with consistent net benefit across a wide range of threshold probabilities in DCA.
This study developed and validated a predictive model for 28-day mortality in BSI patients that demonstrated superior performance compared to traditional severity scores. By integrating clinical, laboratory, and treatment-related variables, the model provides a more comprehensive approach to risk stratification. These findings highlight its potential for improving early identification of high-risk patients and guiding clinical decision-making, though further prospective validation is needed to confirm its generalizability.
血流感染(BSI)是重症监护病房(ICU)中脓毒症和死亡的主要原因。传统的严重程度评分,包括序贯器官衰竭评估(SOFA)、急性生理学评分III(APSIII)和简化急性生理学评分II(SAPS II),在有效预测BSI患者的死亡率方面存在局限性,主要是因为它们依赖于范围狭窄的临床变量。本研究旨在开发并验证一种用于预测BSI患者28天全因死亡率的综合列线图模型。
使用来自MIMIC-IV数据库的3615例血培养阳性患者的数据进行回顾性队列研究,分为训练队列(n = 2532)和验证队列(n = 1083)。通过结合LASSO回归和Boruta算法的两步变量选择过程,我们从58个初始临床参数中确定了12个预测变量。使用受试者工作特征曲线下面积(AUROC)、净重新分类改善(NRI)、综合判别改善(IDI)和决策曲线分析(DCA)对模型性能进行评估。
列线图在训练队列中显示出更好的辨别能力(SOFA的AUROC:0.760对0.671,P < 0.001;APSIII的AUROC:0.760对0.705,P < 0.001;SAPS II的AUROC:0.760对0.707,P < 0.001),在验证队列中表现一致(AUROC:0.742)。我们模型中确定的关键预测因素包括机械通气需求、恶性肿瘤的存在、血小板计数以及格拉斯哥昏迷量表(GCS)评分。该模型在NRI和IDI方面有显著改善,在DCA的广泛阈值概率范围内具有一致的净效益。
本研究开发并验证了一种用于预测BSI患者28天死亡率的模型,该模型与传统严重程度评分相比表现更优。通过整合临床、实验室和治疗相关变量,该模型提供了一种更全面的风险分层方法。这些发现突出了其在改善高危患者早期识别和指导临床决策方面的潜力,不过需要进一步的前瞻性验证来确认其可推广性。