Hui Lok Shu, Munir Muhammad, Vuong An, Hilke Michael, Wong Victor, Fanchini Giovanni, Scharber Markus Clark, Sariciftci Niyazi Serdar, Turak Ayse
Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Ontario, Canada.
Department of Physics, McGill University, Montreal H3A 2T8, Quebec, Canada.
ACS Appl Mater Interfaces. 2020 Oct 14;12(41):46530-46538. doi: 10.1021/acsami.0c12178. Epub 2020 Sep 29.
Nanostructure incorporation into devices plays a key role in improving performance, yet processes for preparing two-dimensional (2D) arrays of colloidal nanoparticles tend not to be universally applicable, particularly for soft and oxygen-sensitive substrates for organic and perovskite-based electronics. Here, we show a method of transferring reverse micelle-deposited (RMD) nanoparticles (perovskite and metal oxide) on top of an organic layer, using a functionalized graphene carrier layer for transfer printing. As the technique can be applied universally to RMD nanoparticles, we used magnetic (γ-FeO) and luminescent (methylammonium lead bromide (MAPbBr)) nanoparticles to validate the transfer-printing methodology. The strong photoluminescence from the MAPbBr under UV illumination and high intrinsic field of the γ-FeO as measured by magnetic force microscopy (MFM), coupled with Raman measurements of the graphene layer, confirm that all components survive the transfer-printing process with little loss of properties. Such an approach to introducing uniform 2D arrays of nanoparticles onto sensitive substrates opens up new avenues to tune the device interfacial properties.
将纳米结构整合到器件中对于提高性能起着关键作用,然而制备二维(2D)胶体纳米颗粒阵列的方法往往并不普遍适用,特别是对于用于有机和基于钙钛矿的电子产品的柔软且对氧气敏感的基板。在此,我们展示了一种使用功能化石墨烯载体层进行转移印刷,将反胶束沉积(RMD)纳米颗粒(钙钛矿和金属氧化物)转移到有机层顶部的方法。由于该技术可普遍应用于RMD纳米颗粒,我们使用磁性(γ-FeO)和发光(甲基溴化铅铵(MAPbBr))纳米颗粒来验证转移印刷方法。通过磁力显微镜(MFM)测量的γ-FeO的高固有场以及紫外光照射下MAPbBr的强光致发光,再加上石墨烯层的拉曼测量,证实所有组件在转移印刷过程中均能保留,且性能几乎没有损失。这种将均匀的二维纳米颗粒阵列引入敏感基板的方法为调节器件界面特性开辟了新途径。