Xu Tienan, Lim Yean Jin, Zheng Yujie, Jung MoonSun, Gaus Katharina, Gardiner Elizabeth E, Lee Woei Ming
Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia.
Lab Chip. 2020 Oct 27;20(21):3960-3969. doi: 10.1039/d0lc00598c.
Moldable, transparent polydimethylsiloxane (PDMS) elastomer microdevices enable a broad range of complex studies of three-dimensional cellular networks in their microenvironment in vitro. However, the uneven distribution of refractive index change, external to PDMS devices and internally in the sample chamber, creates a significant optical path difference (OPD) that distorts the light sheet beam and so restricts diffraction limited performance. We experimentally showed that an OPD of 120 μm results in the broadening of the lateral point spread function by over 4-fold. In this paper, we demonstrate steps to adapt a commercial inverted selective plane illumination microscope (iSPIM) and remove the OPD so as to achieve sub-micrometer imaging ranging from 0.6 ± 0.04 μm to 0.91 ± 0.03 μm of a fluorescence biological sample suspended in regular saline (RI ≈1.34) enclosed in 1.2 to 2 mm thick micromolded PDMS microdevices. We have proven that the removal of the OPD from the external PDMS layer by refractive index (RI) matching with a readily accessible, inexpensive sucrose solution is critical to achieve a >3-fold imaging resolution improvement. To monitor the RI matching process, a single-mode fiber (SMF) illuminator was integrated into the iSPIM. To remove the OPD inside the PDMS channel, we used an electrically tunable lens (ETL) that par-focuses the light sheet beam with the detection objective lens and so minimised axial distortions to attain sub-micrometer imaging resolution. We termed this new light sheet imaging protocol as modified inverted selective plane illumination microscopy (m-iSPIM). Using the high spatial-temporal 3D imaging of m-iSPIM, we experimentally captured single platelet (≈2 μm) recruitment to a platelet aggregate (22.5 μm × 22.5 μm × 6 μm) under flow at a 150 μm depth within a microfluidic channel. m-iSPIM paves the way for the application of light sheet imaging to a wide range of 3D biological models in microfluidic devices which recapitulate features of the physiological microenvironment and elucidate subcellular responses.
可模塑的透明聚二甲基硅氧烷(PDMS)弹性体微器件能够在体外对其微环境中的三维细胞网络进行广泛的复杂研究。然而,PDMS器件外部和样品腔内折射率变化的不均匀分布会产生显著的光程差(OPD),从而使光片光束发生畸变,进而限制了衍射极限性能。我们通过实验表明,120μm的光程差会导致横向点扩散函数的展宽超过4倍。在本文中,我们展示了对商用倒置选择性平面照明显微镜(iSPIM)进行改造并消除光程差的步骤,以实现对悬浮在生理盐水中(折射率≈1.34)、封装在1.2至2mm厚的微模塑PDMS微器件中的荧光生物样品进行0.6±0.04μm至0.91±0.03μm的亚微米成像。我们已经证明,通过使用易于获取且价格低廉的蔗糖溶液进行折射率(RI)匹配,从外部PDMS层去除光程差对于实现成像分辨率提高3倍以上至关重要。为了监测RI匹配过程,将单模光纤(SMF)照明器集成到iSPIM中。为了去除PDMS通道内的光程差,我们使用了电可调透镜(ETL),它使光片光束与检测物镜共聚焦,从而将轴向畸变降至最低以获得亚微米成像分辨率。我们将这种新的光片成像协议称为改进的倒置选择性平面照明显微镜(m-iSPIM)。利用m-iSPIM的高时空三维成像,我们通过实验捕捉了在微流控通道中150μm深度处流动状态下单个血小板(≈2μm)向血小板聚集体(22.5μm×22.5μm×6μm)的募集过程。m-iSPIM为将光片成像应用于微流控器件中的各种三维生物模型铺平了道路,这些模型再现了生理微环境的特征并阐明了亚细胞反应。