Suppr超能文献

含嘧啶二聚体的DNA修复。

Repair of DNA-containing pyrimidine dimers.

作者信息

Grossman L, Caron P R, Mazur S J, Oh E Y

机构信息

Department of Biochemistry, Johns-Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205.

出版信息

FASEB J. 1988 Aug;2(11):2696-701. doi: 10.1096/fasebj.2.11.3294078.

Abstract

Ultraviolet light-induced pyrimidine dimers in DNA are recognized and repaired by a number of unique cellular surveillance systems. The most direct biochemical mechanism responding to this kind of genotoxicity involves direct photoreversal by flavin enzymes that specifically monomerize pyrimidine:pyrimidine dimers monophotonically in the presence of visible light. Incision reactions are catalyzed by a combined pyrimidine dimer DNA-glycosylase:apyrimidinic endonuclease found in some highly UV-resistant organisms. At a higher level of complexity, Escherichia coli has a uvr DNA repair system comprising the UvrA, UvrB, and UvrC proteins responsible for incision. There are several preincision steps governed by this pathway, which includes an ATP-dependent UvrA dimerization reaction required for UvrAB nucleoprotein formation. This complex formation driven by ATP binding is associated with localized topological unwinding of DNA. This same protein complex can catalyze an ATPase-dependent 5'----3'-directed strand displacement of D-loop DNA or short single strands annealed to a single-stranded circular or linear DNA. This putative translocational process is arrested when damaged sites are encountered. The complex is now primed for dual incision catalyzed by UvrC. The remainder of the repair process involves UvrD (helicase II) and DNA polymerase I for a coordinately controlled excision-resynthesis step accompanied by UvrABC turnover. Furthermore, it is proposed that levels of repair proteins can be regulated by proteolysis. UvrB is converted to truncated UvrB* by a stress-induced protease that also acts at similar sites on the E. coli Ada protein. Although UvrB* can bind with UvrA to DNA, it cannot participate in helicase or incision reactions. It is also a DNA-dependent ATPase.

摘要

DNA中紫外线诱导的嘧啶二聚体可被多种独特的细胞监测系统识别并修复。对这种基因毒性最直接的生化机制涉及黄素酶的直接光逆转,黄素酶在可见光存在下特异性地单光子化嘧啶:嘧啶二聚体,使其单体化。切割反应由在一些高度抗紫外线的生物体中发现的嘧啶二聚体DNA糖基化酶:脱嘧啶核酸内切酶联合催化。在更高的复杂程度上,大肠杆菌有一个uvr DNA修复系统,由负责切割的UvrA、UvrB和UvrC蛋白组成。该途径有几个切割前步骤,包括UvrAB核蛋白形成所需的ATP依赖性UvrA二聚化反应。由ATP结合驱动的这种复合物形成与DNA的局部拓扑解旋有关。同样的蛋白质复合物可以催化D环DNA或退火到单链环状或线性DNA上的短单链的ATP酶依赖性5'----3'定向链置换。当遇到受损位点时,这种假定的转位过程就会停止。此时复合物已准备好由UvrC催化进行双重切割。修复过程的其余部分涉及UvrD(解旋酶II)和DNA聚合酶I,用于协调控制的切除-重新合成步骤,同时伴随着UvrABC的周转。此外,有人提出修复蛋白的水平可以通过蛋白水解来调节。UvrB被一种应激诱导的蛋白酶转化为截短的UvrB*,这种蛋白酶也作用于大肠杆菌Ada蛋白的类似位点。虽然UvrB*可以与UvrA结合到DNA上,但它不能参与解旋酶或切割反应。它也是一种DNA依赖性ATP酶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验