Suppr超能文献

用于估计相关化学混合物非线性健康影响的变量和函数选择方法的性能:一项模拟研究。

Performance of variable and function selection methods for estimating the nonlinear health effects of correlated chemical mixtures: A simulation study.

作者信息

Lazarevic Nina, Knibbs Luke D, Sly Peter D, Barnett Adrian G

机构信息

School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia.

Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia.

出版信息

Stat Med. 2020 Nov 30;39(27):3947-3967. doi: 10.1002/sim.8701. Epub 2020 Sep 17.

Abstract

Statistical methods for identifying harmful chemicals in a correlated mixture often assume linearity in exposure-response relationships. Nonmonotonic relationships are increasingly recognized (eg, for endocrine-disrupting chemicals); however, the impact of nonmonotonicity on exposure selection has not been evaluated. In a simulation study, we assessed the performance of Bayesian kernel machine regression (BKMR), Bayesian additive regression trees (BART), Bayesian structured additive regression with spike-slab priors (BSTARSS), generalized additive models with double penalty (GAMDP) and thin plate shrinkage smoothers (GAMTS), multivariate adaptive regression splines (MARS), and lasso penalized regression. We simulated realistic exposure data based on pregnancy exposure to 17 phthalates and phenols in the US National Health and Nutrition Examination Survey using a multivariate copula. We simulated data sets of size N = 250 and compared methods across 32 scenarios, varying by model size and sparsity, signal-to-noise ratio, correlation structure, and exposure-response relationship shapes. We compared methods in terms of their sensitivity, specificity, and estimation accuracy. In most scenarios, BKMR, BSTARSS, GAMDP, and GAMTS achieved moderate to high sensitivity (0.52-0.98) and specificity (0.21-0.99). BART and MARS achieved high specificity (≥0.90), but low sensitivity in low signal-to-noise ratio scenarios (0.20-0.51). Lasso was highly sensitive (0.71-0.99), except for quadratic relationships (≤0.27). Penalized regression methods that assume linearity, such as lasso, may not be suitable for studies of environmental chemicals hypothesized to have nonmonotonic relationships with outcomes. Instead, BKMR, BSTARSS, GAMDP, and GAMTS are attractive methods for flexibly estimating the shapes of exposure-response relationships and selecting among correlated exposures.

摘要

用于识别相关混合物中有害化学物质的统计方法通常假定暴露-反应关系呈线性。非单调关系越来越受到认可(例如,对于内分泌干扰化学物质);然而,非单调性对暴露选择的影响尚未得到评估。在一项模拟研究中,我们评估了贝叶斯核机器回归(BKMR)、贝叶斯加法回归树(BART)、带尖峰-平板先验的贝叶斯结构化加法回归(BSTARSS)、双惩罚广义加法模型(GAMDP)和薄板收缩平滑器(GAMTS)、多元自适应回归样条(MARS)以及套索惩罚回归的性能。我们使用多元copula基于美国国家健康与营养检查调查中孕妇对17种邻苯二甲酸盐和酚类的暴露情况模拟了现实的暴露数据。我们模拟了大小为N = 250的数据集,并在32种情况下比较了各种方法,这些情况因模型大小和稀疏性、信噪比、相关结构以及暴露-反应关系形状而异。我们从灵敏度、特异性和估计准确性方面比较了各种方法。在大多数情况下,BKMR、BSTARSS、GAMDP和GAMTS实现了中等至高灵敏度(0.52 - 0.98)和特异性(0.21 - 0.99)。BART和MARS实现了高特异性(≥0.90),但在低信噪比情况下灵敏度较低(0.20 - 0.51)。套索具有高灵敏度(0.71 - 0.99),但二次关系情况除外(≤0.27)。假设线性的惩罚回归方法,如套索,可能不适用于研究假设与结果具有非单调关系的环境化学物质。相反,BKMR、BSTARSS、GAMDP和GAMTS是灵活估计暴露-反应关系形状并在相关暴露中进行选择的有吸引力的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验