Suppr超能文献

三种贝叶斯变量选择方法在肥胖女性减肥背景下的比较疗效

Comparative efficacy of three Bayesian variable selection methods in the context of weight loss in obese women.

作者信息

Pesenti Nicola, Quatto Piero, Colicino Elena, Cancello Raffaella, Scacchi Massimo, Zambon Antonella

机构信息

Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, Milan, Italy.

Department of Economics, Management and Statistics, University of Milano-Bicocca, Milan, Italy.

出版信息

Front Nutr. 2023 Jul 18;10:1203925. doi: 10.3389/fnut.2023.1203925. eCollection 2023.

Abstract

The use of high-dimensional data has expanded in many fields, including in clinical research, thus making variable selection methods increasingly important compared to traditional statistical approaches. The work aims to compare the performance of three supervised Bayesian variable selection methods to detect the most important predictors among a high-dimensional set of variables and to provide useful and practical guidelines of their use. We assessed the variable selection ability of: (1) Bayesian Kernel Machine Regression (BKMR), (2) Bayesian Semiparametric Regression (BSR), and (3) Bayesian Least Absolute Shrinkage and Selection Operator (BLASSO) regression on simulated data of different dimensions and under three scenarios with disparate predictor-response relationships and correlations among predictors. This is the first study describing when one model should be preferred over the others and when methods achieve comparable results. BKMR outperformed all other models with small synthetic datasets. BSR was strongly dependent on the choice of its own intrinsic parameter, but its performance was comparable to BKMR with large datasets. BLASSO should be preferred only when it is reasonable to hypothesise the absence of synergies between predictors and the presence of monotonous predictor-outcome relationships. Finally, we applied the models to a real case study and assessed the relationships among anthropometric, biochemical, metabolic, cardiovascular, and inflammatory variables with weight loss in 755 hospitalised obese women from the Follow Up OBese patients at AUXOlogico institute (FUOBAUXO) cohort.

摘要

高维数据的应用已在包括临床研究在内的许多领域得到扩展,因此与传统统计方法相比,变量选择方法变得越来越重要。这项工作旨在比较三种有监督的贝叶斯变量选择方法的性能,以在一组高维变量中检测出最重要的预测变量,并提供其使用的有用且实用的指导方针。我们评估了以下方法在不同维度的模拟数据上,以及在预测变量-响应关系和预测变量之间相关性不同的三种情况下的变量选择能力:(1)贝叶斯核机器回归(BKMR),(2)贝叶斯半参数回归(BSR),以及(3)贝叶斯最小绝对收缩和选择算子(BLASSO)回归。这是第一项描述何时应优先选择一种模型而非其他模型,以及何时方法能取得可比结果的研究。在小型合成数据集上,BKMR的表现优于所有其他模型。BSR强烈依赖于其自身固有参数的选择,但其性能在大型数据集上与BKMR相当。仅当合理假设预测变量之间不存在协同作用且预测变量-结果关系呈单调时,才应优先选择BLASSO。最后,我们将这些模型应用于一个实际案例研究,并评估了来自奥克西洛吉科研究所肥胖患者随访队列(FUOBAUXO)的755名住院肥胖女性中人体测量、生化、代谢、心血管和炎症变量与体重减轻之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f677/10390836/ecd04eeeb98d/fnut-10-1203925-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验