Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
Cell Metab. 2020 Nov 3;32(5):767-785.e7. doi: 10.1016/j.cmet.2020.08.015. Epub 2020 Sep 16.
Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABA receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.
轴突在成熟的中枢神经系统(CNS)中发生轴突切断后无法再生,部分原因是反应性神经胶质细胞产生星形胶质瘢痕、软骨素硫酸盐蛋白聚糖和髓鞘碎片构成的抑制性环境。我们研究了这种抑制性环境,表明它是可逆转的,并取决于神经胶质细胞的代谢状态。我们表明,通过增加糖酵解,在果蝇的中枢神经系统损伤后,神经胶质细胞可以被重新编程以促进形态和功能的再生。这种增强是由神经胶质细胞衍生的代谢物:L-乳酸和 L-2-羟戊二酸(L-2HG)介导的。通过遗传/药理学增加或减少它们的生物活性,可以促进或阻碍中枢神经系统轴突再生。来自神经胶质细胞的 L-乳酸和 L-2HG 作用于神经元代谢型 GABA 受体,以增强 cAMP 信号。局部应用 L-乳酸到受伤的脊髓中促进皮质脊髓束轴突再生,导致成年小鼠的行为恢复。我们的发现揭示了一种代谢转换,可以绕过神经胶质细胞的抑制,同时放大它们对治疗中枢神经系统损伤的有益作用。