Suppr超能文献

使用小波包变换从单通道脑电信号中提取时域特征的自动困倦检测分类方法。

Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal.

作者信息

B Venkata Phanikrishna, Chinara Suchismitha

机构信息

Department of Computer Science and Engineering, National Institute of Technology, Rourkela, India.

Department of Computer Science and Engineering, National Institute of Technology, Rourkela, India.

出版信息

J Neurosci Methods. 2021 Jan 1;347:108927. doi: 10.1016/j.jneumeth.2020.108927. Epub 2020 Sep 14.

Abstract

BACKGROUND

Detecting human drowsiness during some critical works like vehicle driving, crane operating, mining blasting, etc. is one of the safeguards to prevent accidents. Among several drowsiness detection (DD) methods, a combination of neuroscience and computer science knowledge has a better ability to differentiate awake and sleep states. Most of the current models are implemented using multi-sensors electroencephalogram (EEG) signals, multi-domain features, predefined features selection algorithms. Therefore, there is great interest in the method of detecting drowsiness on embedded platforms with improved accuracy using generalized best features.

NEW-METHOD: Single-channel EEG based drowsiness detection (DD) model is proposed in this by utilizing wavelet packet transform (WPT) to extract the time-domain features from considered channel EEG. The dimension of the feature vector is reduced by the proposed novel feature selection method.

RESULTS

The proposed model on freely available real-time sleep analysis EEG and Simulated Virtual Driving Driver (SVDD) EEG achieves 94.45% and 85.3% accuracy, respectively.

COMPARISON-WITH-EXISTING-METHOD: The results show that the proposed DD method produces better accuracy compared to the state-of-the-art using the physiological dataset with the proposed time-domain sub-band-based features and feature selection method. This task of detecting drowsiness by analyzing the 5-seconds EEG signal with four features is an improvement to my previous work on detecting drowsiness using a 30-seconds EEG signal with 66 features.

CONCLUSIONS

Time-domain features obtained from EEG time-domain sub-bands collected using WPT achieving excellent accuracy rate by selecting unique optimization features for all subjects by the proposed feature selection algorithm.

摘要

背景

在诸如车辆驾驶、起重机操作、采矿爆破等一些关键工作过程中检测人体困倦是预防事故的保障措施之一。在几种困倦检测(DD)方法中,神经科学与计算机科学知识相结合具有更好的区分清醒和睡眠状态的能力。当前大多数模型是使用多传感器脑电图(EEG)信号、多域特征、预定义特征选择算法实现的。因此,人们对在嵌入式平台上使用广义最佳特征提高准确性的困倦检测方法非常感兴趣。

新方法

本文提出了一种基于单通道脑电图的困倦检测(DD)模型,该模型利用小波包变换(WPT)从所考虑通道的脑电图中提取时域特征。通过所提出的新颖特征选择方法降低了特征向量的维度。

结果

所提出的模型在免费的实时睡眠分析脑电图和模拟虚拟驾驶驾驶员(SVDD)脑电图上分别实现了94.45%和85.3%的准确率。

与现有方法的比较

结果表明,与使用基于所提出的时域子带特征和特征选择方法的生理数据集的现有技术相比,所提出的DD方法具有更高的准确率。通过分析具有四个特征的5秒脑电图信号来检测困倦的这项任务是对我之前使用具有66个特征的30秒脑电图信号检测困倦的工作的改进。

结论

通过小波包变换收集脑电图时域子带获得的时域特征,通过所提出的特征选择算法为所有受试者选择独特的优化特征,从而实现了优异的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验