Suppr超能文献

一种基于单通道脑电图的有效混合深度学习模型用于独立于个体的嗜睡识别

An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition.

作者信息

Reddy Y Rama Muni, Muralidhar P, Srinivas M

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology, Warangal, Telangana, 506004, India.

Department of Computer Science Engineering, National Institute of Technology, Warangal, Telangana, 506004, India.

出版信息

Brain Topogr. 2024 Jan;37(1):1-18. doi: 10.1007/s10548-023-01016-0. Epub 2023 Nov 23.

Abstract

Nowadays, road accidents pose a severe risk in cases of sleep disorders. We proposed a novel hybrid deep-learning model for detecting drowsiness to address this issue. The proposed model combines the strengths of discrete wavelet long short-term memory (DWLSTM) and convolutional neural networks (CNN) models to classify single-channel electroencephalogram (EEG) signals. Baseline models such as support vector machine (SVM), linear discriminant analysis (LDA), back propagation neural networks (BPNN), CNN, and CNN merged with LSTM (CNN+LSTM) did not fully utilize the time sequence information. Our proposed model incorporates a majority voting between LSTM layers integrated with discrete wavelet transform (DWT) and the CNN model fed with spectrograms as images. The features extracted from sub-bands generated by DWT can provide more informative & discriminating than using the raw EEG signal. Similarly, spectrogram images fed to CNN learn the specific patterns and features with different levels of drowsiness. Furthermore, the proposed model outperformed state-of-the-art deep learning techniques and conventional baseline methods, achieving an average accuracy of 74.62%, 77.76% (using rounding, F1-score maximization approach respectively for generating labels) on 11 subjects for leave-one-out subject method. It achieved high accuracy while maintaining relatively shorter training and testing times, making it more desirable for quicker drowsiness detection. The performance metrics (accuracy, precision, recall, F1-score) are evaluated after 100 randomized tests along with a 95% confidence interval for classification. Additionally, we validated the mean accuracies from five types of wavelet families, including daubechis, symlet, bi-orthogonal, coiflets, and haar, merged with LSTM layers.

摘要

如今,道路交通事故在睡眠障碍情况下构成了严重风险。我们提出了一种用于检测嗜睡的新型混合深度学习模型来解决这一问题。所提出的模型结合了离散小波长短期记忆(DWLSTM)和卷积神经网络(CNN)模型的优势,以对单通道脑电图(EEG)信号进行分类。诸如支持向量机(SVM)、线性判别分析(LDA)、反向传播神经网络(BPNN)、CNN以及与长短期记忆网络合并的CNN(CNN + LSTM)等基线模型并未充分利用时间序列信息。我们提出的模型在与离散小波变换(DWT)集成的长短期记忆网络层和以频谱图作为图像输入的CNN模型之间进行多数投票。从DWT生成的子带中提取的特征比使用原始EEG信号能提供更多信息且更具区分性。同样,输入到CNN的频谱图图像能够学习到不同嗜睡程度的特定模式和特征。此外,所提出的模型优于当前最先进的深度学习技术和传统基线方法,在留一法的11名受试者上分别实现了74.62%、77.76%的平均准确率(分别使用四舍五入、F1分数最大化方法生成标签)。它在保持相对较短的训练和测试时间的同时实现了高精度,使其更适合于更快的嗜睡检测。在100次随机测试后,对性能指标(准确率、精确率、召回率、F1分数)进行评估,并给出分类的95%置信区间。此外,我们还验证了包括Daubechis、Symlet、双正交、Coiflets和Haar在内的五种小波族与长短期记忆网络层合并后的平均准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验