Bressloff Paul C
Department of Mathematics, University of Utah Salt Lake City, Utah 84112, USA.
Phys Rev E. 2020 Aug;102(2-1):022134. doi: 10.1103/PhysRevE.102.022134.
In this paper we investigate the effects of diffusion on the dynamics of a single focal adhesion at the leading edge of a crawling cell by considering a simplified model of sliding friction. Using a mean-field approximation, we derive an effective single-particle system that can be interpreted as an overdamped Brownian particle with spatially dependent stochastic resetting. We then use renewal and path-integral methods from the theory of stochastic resetting to calculate the mean sliding velocity under the combined action of diffusion, active forces, viscous drag, and elastic forces generated by the adhesive bonds. Our analysis suggests that the inclusion of diffusion can sharpen the response to changes in the effective stiffness of the adhesion bonds. This is consistent with the hypothesis that force fluctuations could play a role in mechanosensing of the local microenvironment.
在本文中,我们通过考虑滑动摩擦的简化模型,研究了扩散对爬行细胞前沿单个粘着斑动力学的影响。使用平均场近似,我们推导了一个有效的单粒子系统,该系统可解释为具有空间相关随机重置的过阻尼布朗粒子。然后,我们使用随机重置理论中的更新和路径积分方法,来计算在扩散、主动力、粘性阻力以及粘着键产生的弹性力共同作用下的平均滑动速度。我们的分析表明,考虑扩散可以增强对粘着键有效刚度变化的响应。这与力波动可能在局部微环境的机械传感中起作用的假设是一致的。