Suppr超能文献

基于体育产业发展背景下的轻量级目标检测网络在体育视频分析中的应用。

Video Analysis in Sports by Lightweight Object Detection Network under the Background of Sports Industry Development.

机构信息

Physical Department, Chang'an University, Xi'an 710064, Shaanxi, China.

Physical Institute, Yan'an University, Yan'an 716000, Shaanxi, China.

出版信息

Comput Intell Neurosci. 2022 Aug 21;2022:3844770. doi: 10.1155/2022/3844770. eCollection 2022.

Abstract

This study uses the video image information in sports video image analysis to realize scientific sports training. In recent years, game video image analysis has referenced athletes' sports training. The sports video analysis is a widely used and effective method. First, the you only look once (YOLO) method is explored in lightweight object detection. Second, a sports motion analysis system based on the YOLO-OSA (you only look once-one-shot aggregation) target detection network is built based on the dense convolutional network (DenseNet) target detection network established by the one-shot aggregation (OSA) connection. Finally, object detection evaluation principles are used to analyze network performance and object detection in sports video. The results show that the more obvious the target feature, the larger the size, and the more motion information contained in the sports category feature, the more obvious the effect of the detected target. The higher the resolution of the sports video image, the higher the model detection accuracy of the YOLO-OSA target detection network, and the richer the visual video information. In sports video analysis, video images of the appropriate resolution are fed into the system. The YOLO-OSA network achieved 21.70% precision and 54.90% recall. In general, the YOLO-OSA network has certain pertinence for sports video image analysis, and it improves the detection speed of video analysis. The research and analysis of video in sports under the lightweight target detection network have certain reference significance.

摘要

本研究利用运动视频图像分析中的视频图像信息,实现科学运动训练。近年来,游戏视频图像分析已经参考运动员的运动训练。运动视频分析是一种广泛使用且有效的方法。首先,探索了轻量级目标检测中的单次检测一次聚合(YOLO-OSA)目标检测网络。其次,基于建立的密集卷积网络(DenseNet)目标检测网络的单次检测一次聚合(OSA)连接,构建了基于 YOLO-OSA(单次检测一次聚合)目标检测网络的运动分析系统。最后,使用目标检测评估原则分析网络性能和运动视频中的目标检测。结果表明,目标特征越明显,尺寸越大,运动类别特征中包含的运动信息越多,检测目标的效果越明显。运动视频图像的分辨率越高,YOLO-OSA 目标检测网络的模型检测精度越高,视觉视频信息越丰富。在运动视频分析中,将适当分辨率的视频图像输入系统。YOLO-OSA 网络的精度达到 21.70%,召回率达到 54.90%。总体而言,YOLO-OSA 网络对运动视频图像分析具有一定的针对性,提高了视频分析的检测速度。在轻量级目标检测网络下对视频在体育中的研究和分析具有一定的参考意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验