Suppr超能文献

工程裂解多糖单加氧酶(LPMOs)。

Engineering lytic polysaccharide monooxygenases (LPMOs).

机构信息

Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.

Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.

出版信息

Methods Enzymol. 2020;644:1-34. doi: 10.1016/bs.mie.2020.04.052. Epub 2020 May 15.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that catalyze the hydroxylation of glycosidic bonds found in the most abundant and recalcitrant polysaccharides on Earth. Since their discovery in 2010, these enzymes have received extensive attention in both fundamental and applied research due to their remarkable oxidative power and synergistic interplay with hydrolytic enzymes. The harsh and unnatural conditions used in industrial enzymatic saccharification processes and the sensitivity of LPMOs for damage induced by reactive oxygen species call for enzyme engineering to develop LPMOs to become robust industrial biocatalysts. Other engineering targets include improved catalytic activity, adjusted substrate specificity and the introduction of completely new activities. Reaching these targets not only requires appropriate methods for measuring enzyme activity, but also requires in-depth knowledge of the active site and the reaction mechanism, which is yet to be achieved in the LPMO field. Here we describe what has been done in the LPMO engineering field so far. Furthermore, we address the difficulties involved in properly assessing LPMO functionality, which are due to common side reactions taking place in LPMO reactions and which complicate screening methods.

摘要

溶细胞多糖单加氧酶(LPMOs)是单铜酶,能够催化地球上最丰富和最难降解的多糖中糖苷键的羟化。自 2010 年发现以来,由于其显著的氧化能力以及与水解酶的协同作用,这些酶在基础研究和应用研究中受到了广泛关注。在工业酶解过程中使用的苛刻和非自然条件以及 LPMOs 对活性氧诱导的损伤的敏感性要求进行酶工程开发,使 LPMOs 成为强大的工业生物催化剂。其他工程目标包括提高催化活性、调整底物特异性和引入全新的活性。实现这些目标不仅需要有适当的方法来测量酶活性,还需要深入了解活性位点和反应机制,而这在 LPMO 领域尚未实现。在这里,我们描述了迄今为止在 LPMO 工程领域所做的工作。此外,我们还解决了在正确评估 LPMO 功能方面所涉及的困难,这些困难是由于 LPMO 反应中常见的副反应引起的,这使得筛选方法变得复杂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验