Zhang Quan-Yan, Gu Kai-Di, Wang Jia-Hui, Yu Jian-Qiang, Wang Xiao-Fei, Zhang Shuai, You Chun-Xiang, Hu Da-Gang, Hao Yu-Jin
National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China.
College of Chemistry and Material Science, Shandong Agricultural University, Tai-An, Shandong 271018 China.
Hortic Res. 2020 Sep 2;7(1):151. doi: 10.1038/s41438-020-00384-z. eCollection 2020.
As an important primary metabolite, malate plays a key role in regulating osmotic pressure, pH homeostasis, stress tolerance, and fruit quality of apple. The R2R3-MYB transcription factor (TF) MdMYB73 was identified as a protein that plays a critical role in determining malate accumulation and vacuolar acidification by directly regulating the transcription of aluminum-activated malate transporter 9 (), vacuolar ATPase subunit A (), and vacuolar pyrophosphatase 1 () in apple. In addition, the bHLH TF MdCIbHLH1 interacts with MdMYB73 and enhances the transcriptional activity of . Our previous studies demonstrated that the BTB-BACK-TAZ domain protein MdBT2 can degrade MdCIbHLH1 to influence malate accumulation and vacuolar acidification. However, the potential upstream regulators of MdMYB73 are currently unknown. In this study, we found that MdBT2 directly interacts with and degrades MdMYB73 through the ubiquitin/26S proteasome pathway to regulate malate accumulation and vacuolar acidification. A series of functional assays with apple calli and fruit showed that MdBT2 controls malate accumulation and vacuolar acidification in an MdMYB73-dependent manner. Overall, our findings shed light on the mechanism by which the BTB-BACK-TAZ domain protein MdBT2 regulates malate accumulation and vacuolar acidification by targeting MdMYB73 and MdCIbHLH1 for ubiquitination in apple. This information may help guide traditional breeding programs and fruit tree molecular breeding, and lead to improvements in fruit quality and stress tolerance.
作为一种重要的初级代谢产物,苹果酸在调节苹果的渗透压、pH稳态、胁迫耐受性和果实品质方面发挥着关键作用。R2R3-MYB转录因子(TF)MdMYB73被鉴定为一种通过直接调控苹果中铝激活苹果酸转运蛋白9()、液泡ATP酶亚基A()和液泡焦磷酸酶1()的转录来决定苹果酸积累和液泡酸化的关键蛋白。此外,bHLH转录因子MdCIbHLH1与MdMYB73相互作用并增强其转录活性。我们之前的研究表明,BTB-BACK-TAZ结构域蛋白MdBT2可以降解MdCIbHLH1以影响苹果酸积累和液泡酸化。然而,MdMYB73潜在的上游调控因子目前尚不清楚。在本研究中,我们发现MdBT2通过泛素/26S蛋白酶体途径直接与MdMYB73相互作用并降解它,从而调节苹果酸积累和液泡酸化。对苹果愈伤组织和果实进行的一系列功能分析表明,MdBT2以MdMYB73依赖的方式控制苹果酸积累和液泡酸化。总体而言,我们的研究结果揭示了BTB-BACK-TAZ结构域蛋白MdBT2通过靶向MdMYB73和MdCIbHLH1进行泛素化来调节苹果酸积累和液泡酸化的机制。这些信息可能有助于指导传统育种计划和果树分子育种,并改善果实品质和胁迫耐受性。