Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
J Control Release. 2020 Dec 10;328:631-639. doi: 10.1016/j.jconrel.2020.09.029. Epub 2020 Sep 18.
Numerous biological enzymes are considered promising for tumor therapy. However, the remote control of enzymatic activity in vivo to achieve a satisfactory therapeutic effect remains challenge. Herein, we loaded chlorin e6 (Ce6) to the peroxidase-mimic metal-organic framework (MOF) MIL-100 (Ce6@MIL-100) to develop cascade-reaction nanoparticles shielded with hyaluronic acid (CMH NPs). CMH NPs and the highly expressed HO in the tumor site underwent Fenton reaction to generate hydroxyl radical (·OH) and O. The produced ·OH and O were used for chemodynamic therapy and alleviating hypoxia, respectively. Under near-infrared light irradiation, the Ce6-mediated photochemical effect not only generated cytotoxic singlet oxygen (O) for enhanced photodynamic therapy with additional oxygen supply, but also produced HO to amplify the Fenton reaction. Therefore, the CMH NPs exhibited a virtuous cycle of cascade reactions. Furthermore, comprehensive experiments demonstrated that combined therapy could effectively ablate tumors. Thus, the nanozyme based on MOF realized potent chemo-photodynamic therapeutic efficacy. Overall, the nanoplatform displayed an exciting biomedical application of MOF-derived nanozyme as a versatile therapeutic agent.
许多生物酶被认为是有前途的肿瘤治疗药物。然而,如何在体内远程控制酶的活性以达到令人满意的治疗效果仍然是一个挑战。在此,我们将氯(Ce6)负载到过氧化物酶模拟的金属有机骨架(MOF) MIL-100(Ce6@MIL-100)上,以开发具有透明质酸(HA)屏蔽的级联反应纳米颗粒(CMH NPs)。CMH NPs 和肿瘤部位高表达的 HO 发生芬顿反应,生成羟基自由基(·OH)和 O。产生的·OH 和 O 分别用于化学动力学治疗和缓解缺氧。在近红外光照射下,Ce6 介导的光化学反应不仅产生了具有细胞毒性的单线态氧(O),以增强光动力治疗并提供额外的氧气供应,还产生了 HO 以放大芬顿反应。因此,CMH NPs 表现出级联反应的良性循环。此外,综合实验表明,联合治疗可以有效地消融肿瘤。因此,基于 MOF 的纳米酶实现了强大的化学-光动力治疗效果。总的来说,该纳米平台展示了 MOF 衍生纳米酶作为一种多功能治疗剂在生物医学中的应用前景。