Tandon School of Engineering, New York University, Brooklyn, New York, USA.
J Am Med Inform Assoc. 2020 Dec 9;27(12):2016-2019. doi: 10.1093/jamia/ocaa133.
The exponential growth of health data from devices, health applications, and electronic health records coupled with the development of data analysis tools such as machine learning offer opportunities to leverage these data to mitigate health disparities. However, these tools have also been shown to exacerbate inequities faced by marginalized groups. Focusing on health disparities should be part of good machine learning practice and regulatory oversight of software as medical devices. Using the Food and Drug Administration (FDA)'s proposed framework for regulating machine learning tools in medicine, I show that addressing health disparities during the premarket and postmarket stages of review can help anticipate and mitigate group harms.
健康数据呈指数级增长,这些数据来自设备、健康应用程序和电子健康记录,加上数据分析工具(如机器学习)的发展,为利用这些数据来减轻健康差异提供了机会。然而,这些工具也被证明会加剧边缘化群体面临的不平等。关注健康差异应该成为良好的机器学习实践和软件作为医疗器械监管的一部分。我利用食品和药物管理局(FDA)提出的监管医学中机器学习工具的框架,表明在审查的上市前和上市后阶段解决健康差异问题有助于预测和减轻群体伤害。
Curr Diab Rep. 2020-2-1
Semin Vasc Surg. 2023-9
Lancet Digit Health. 2021-6
J Med Internet Res. 2021-10-26
J Med Internet Res. 2024-4-18
Front Digit Health. 2024-1-23
Patterns (N Y). 2023-11-10
PLOS Digit Health. 2023-11-20
NPJ Digit Med. 2023-11-17
Science. 2019-10-25
AMA J Ethics. 2019-2-1
Ann Intern Med. 2018-12-4
MMWR Suppl. 2013-11-22
Invest Ophthalmol Vis Sci. 2007-5