Suppr超能文献

事后才考虑的公平性:美国人对模型开发者与临床医生用户合作中的公平性看法。

Fairness as an afterthought: An American perspective on fairness in model developer-clinician user collaborations.

作者信息

Banja John, Gichoya Judy Wawira, Martinez-Martin Nicole, Waller Lance A, Clifford Gari D

机构信息

Center for Ethics, Emory University, Atlanta, Georgia, United States of America.

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America.

出版信息

PLOS Digit Health. 2023 Nov 20;2(11):e0000386. doi: 10.1371/journal.pdig.0000386. eCollection 2023 Nov.

Abstract

Numerous ethics guidelines have been handed down over the last few years on the ethical applications of machine learning models. Virtually every one of them mentions the importance of "fairness" in the development and use of these models. Unfortunately, though, these ethics documents omit providing a consensually adopted definition or characterization of fairness. As one group of authors observed, these documents treat fairness as an "afterthought" whose importance is undeniable but whose essence seems strikingly elusive. In this essay, which offers a distinctly American treatment of "fairness," we comment on a number of fairness formulations and on qualitative or statistical methods that have been encouraged to achieve fairness. We argue that none of them, at least from an American moral perspective, provides a one-size-fits-all definition of or methodology for securing fairness that could inform or standardize fairness over the universe of use cases witnessing machine learning applications. Instead, we argue that because fairness comprehensions and applications reflect a vast range of use contexts, model developers and clinician users will need to engage in thoughtful collaborations that examine how fairness should be conceived and operationalized in the use case at issue. Part II of this paper illustrates key moments in these collaborations, especially when inter and intra disagreement occurs among model developer and clinician user groups over whether a model is fair or unfair. We conclude by noting that these collaborations will likely occur over the lifetime of a model if its claim to fairness is to advance beyond "afterthought" status.

摘要

在过去几年里,已经出台了许多关于机器学习模型伦理应用的伦理准则。实际上,它们中的每一项都提到了在这些模型的开发和使用中“公平性”的重要性。然而,不幸的是,这些伦理文件都没有提供一个得到普遍认可的公平性定义或特征描述。正如一组作者所指出的,这些文件将公平性视为一种“事后想法”,其重要性不可否认,但其本质似乎却难以捉摸。在本文中,我们以一种独特的美国视角来探讨“公平性”,评论了一些公平性的表述以及为实现公平性而被提倡的定性或统计方法。我们认为,至少从美国的道德视角来看,它们中没有一个能提供一个适用于所有情况的公平性定义或确保公平性的方法,从而为见证机器学习应用的所有用例中的公平性提供指导或使其标准化。相反,我们认为,由于公平性的理解和应用反映了广泛的使用背景,模型开发者和临床医生用户需要进行深入的合作,以研究在相关用例中应如何理解和实施公平性。本文第二部分阐述了这些合作中的关键时刻,特别是当模型开发者和临床医生用户群体在模型是否公平的问题上出现内部和相互之间的分歧时。我们在结论中指出,如果一个模型要将其对公平性的主张提升到超越“事后想法”的地位,那么这些合作很可能会贯穿该模型的整个生命周期。

相似文献

4
On the relation between trust and fairness in environmental risk management.论环境风险管理中信任与公平的关系。
Risk Anal. 2008 Oct;28(5):1395-414. doi: 10.1111/j.1539-6924.2008.01091.x. Epub 2008 Jul 8.
6
Enabling Fairness in Healthcare Through Machine Learning.通过机器学习实现医疗保健中的公平性。
Ethics Inf Technol. 2022;24(3):39. doi: 10.1007/s10676-022-09658-7. Epub 2022 Aug 31.
8
On Consequentialism and Fairness.论结果主义与公平性。
Front Artif Intell. 2020 May 8;3:34. doi: 10.3389/frai.2020.00034. eCollection 2020.
9
The : Filling a critical gap in global research ethics.填补全球研究伦理的关键空白。
Gates Open Res. 2018 Nov 15;2:58. doi: 10.12688/gatesopenres.12884.1.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验