Núñez-López M, Alarcón Ramos L, Velasco-Hernández J X
Department of Mathematics, ITAM Río Hondo 1, Ciudad de México 01080, México.
Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana, Cuajimalpa, Av. Vasco de Quiroga 4871, Cuajimalpa de Morelos, 05300, México.
Appl Math Model. 2021 Jan;89:1949-1964. doi: 10.1016/j.apm.2020.08.025. Epub 2020 Sep 12.
Most of the recent epidemic outbreaks in the world have as a trigger, a strong migratory component as has been evident in the recent Covid-19 pandemic. In this work we address the problem of migration of human populations and its effect on pathogen reinfections in the case of Dengue, using a Markov-chain susceptible-infected-susceptible (SIS) metapopulation model over a network. Our model postulates a general contact rate that represents a local measure of several factors: the population size of infected hosts that arrive at a given location as a function of total population size, the current incidence at neighboring locations, and the connectivity of the network where the disease spreads. This parameter can be interpreted as an indicator of outbreak risk at a given location. This parameter is tied to the fraction of individuals that move across boundaries (migration). To illustrate our model capabilities, we estimate from epidemic Dengue data in Mexico the dynamics of migration at a regional scale incorporating climate variability represented by an index based on precipitation data.
世界上最近的大多数疫情爆发都有一个强烈的迁徙因素作为触发因素,这在最近的新冠疫情中已很明显。在这项工作中,我们使用网络上的马尔可夫链易感-感染-易感(SIS)复合种群模型,研究了人口迁移问题及其对登革热病例中病原体再感染的影响。我们的模型假定了一个一般接触率,它代表了几个因素的局部度量:到达给定地点的受感染宿主的种群规模是总人口规模的函数、相邻地点的当前发病率以及疾病传播所在网络的连通性。这个参数可以解释为给定地点爆发风险的指标。这个参数与跨越边界迁移的个体比例(迁移)相关。为了说明我们模型的能力,我们根据墨西哥登革热疫情数据,估算了区域尺度上的迁移动态,其中纳入了以基于降水数据的指数表示的气候变率。