Suppr超能文献

人工智能、机器学习与心血管疾病

Artificial Intelligence, Machine Learning, and Cardiovascular Disease.

作者信息

Mathur Pankaj, Srivastava Shweta, Xu Xiaowei, Mehta Jawahar L

机构信息

Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

出版信息

Clin Med Insights Cardiol. 2020 Sep 9;14:1179546820927404. doi: 10.1177/1179546820927404. eCollection 2020.

Abstract

Artificial intelligence (AI)-based applications have found widespread applications in many fields of science, technology, and medicine. The use of enhanced computing power of machines in clinical medicine and diagnostics has been under exploration since the 1960s. More recently, with the advent of advances in computing, algorithms enabling machine learning, especially deep learning networks that mimic the human brain in function, there has been renewed interest to use them in clinical medicine. In cardiovascular medicine, AI-based systems have found new applications in cardiovascular imaging, cardiovascular risk prediction, and newer drug targets. This article aims to describe different AI applications including machine learning and deep learning and their applications in cardiovascular medicine. AI-based applications have enhanced our understanding of different phenotypes of heart failure and congenital heart disease. These applications have led to newer treatment strategies for different types of cardiovascular diseases, newer approach to cardiovascular drug therapy and postmarketing survey of prescription drugs. However, there are several challenges in the clinical use of AI-based applications and interpretation of the results including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data which can lead to erroneous conclusions. Still, AI is a transformative technology and has immense potential in health care.

摘要

基于人工智能(AI)的应用已在科学、技术和医学等许多领域得到广泛应用。自20世纪60年代以来,人们一直在探索如何在临床医学和诊断中利用机器增强的计算能力。最近,随着计算技术的进步、实现机器学习的算法尤其是功能上模仿人类大脑的深度学习网络的出现,人们重新燃起了在临床医学中使用它们的兴趣。在心血管医学领域,基于AI的系统已在心血管成像、心血管风险预测和新的药物靶点方面有了新的应用。本文旨在描述包括机器学习和深度学习在内的不同AI应用及其在心血管医学中的应用。基于AI的应用增进了我们对心力衰竭和先天性心脏病不同表型的理解。这些应用带来了针对不同类型心血管疾病的新治疗策略、心血管药物治疗的新方法以及处方药的上市后调查。然而,基于AI的应用在临床使用和结果解读方面存在若干挑战,包括数据隐私、数据选择不当/过时、选择偏倚以及数据中历史偏见/刻板印象的无意延续,这些都可能导致错误结论。尽管如此,AI仍是一项变革性技术,在医疗保健领域具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc5d/7485162/494d5f9f3d99/10.1177_1179546820927404-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验