Suppr超能文献

炎症性病变与脑肿瘤:基于磁共振成像中的纹理特征能够区分它们吗?

Inflammatory lesions and brain tumors: is it possible to differentiate them based on texture features in magnetic resonance imaging?

作者信息

Alves Allan Felipe Fattori, Miranda José Ricardo de Arruda, Reis Fabiano, de Souza Sergio Augusto Santana, Alves Luciana Luchesi Rodrigues, Feitoza Laisson de Moura, de Castro José Thiago de Souza, de Pina Diana Rodrigues

机构信息

Department of Physics and Biophysics, Botucatu Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.

Department of Radiology, School of Medical Sciences, University of Campinas (Unicamp), Campinas, SP, Brazil.

出版信息

J Venom Anim Toxins Incl Trop Dis. 2020 Sep 4;26:e20200011. doi: 10.1590/1678-9199-JVATITD-2020-0011.

Abstract

BACKGROUND

Neuroimaging strategies are essential to locate, to elucidate the etiology, and to the follow up of brain disease patients. Magnetic resonance imaging (MRI) provides good cerebral soft-tissue contrast detection and diagnostic sensitivity. Inflammatory lesions and tumors are common brain diseases that may present a similar pattern of a cerebral ring enhancing lesion on MRI, and non-enhancing core (which may reflect cystic components or necrosis) leading to misdiagnosis. Texture analysis (TA) and machine learning approaches are computer-aided diagnostic tools that can be used to assist radiologists in such decisions.

METHODS

In this study, we combined texture features with machine learning (ML) methods aiming to differentiate brain tumors from inflammatory lesions in magnetic resonance imaging. Retrospective examination of 67 patients, with a pattern of a cerebral ring enhancing lesion, 30 with inflammatory, and 37 with tumoral lesions were selected. Three different MRI sequences and textural features were extracted using gray level co-occurrence matrix and gray level run length. All diagnoses were confirmed by histopathology, laboratorial analysis or MRI.

RESULTS

The features extracted were processed for the application of ML methods that performed the classification. T1-weighted images proved to be the best sequence for classification, in which the differentiation between inflammatory and tumoral lesions presented high accuracy (0.827), area under ROC curve (0.906), precision (0.837), and recall (0.912).

CONCLUSION

The algorithm obtained textures capable of differentiating brain tumors from inflammatory lesions, on T1-weghted images without contrast medium using the Random Forest machine learning classifier.

摘要

背景

神经影像学策略对于定位、阐明病因以及对脑部疾病患者进行随访至关重要。磁共振成像(MRI)能提供良好的脑软组织对比度检测和诊断敏感性。炎症性病变和肿瘤是常见的脑部疾病,在MRI上可能呈现出类似的脑环形强化病变模式以及无强化核心(这可能反映囊性成分或坏死),从而导致误诊。纹理分析(TA)和机器学习方法是计算机辅助诊断工具,可用于协助放射科医生做出此类诊断。

方法

在本研究中,我们将纹理特征与机器学习(ML)方法相结合,旨在在磁共振成像中区分脑肿瘤和炎症性病变。对67例具有脑环形强化病变模式的患者进行回顾性检查,其中30例为炎症性病变,37例为肿瘤性病变。使用灰度共生矩阵和灰度游程长度提取三种不同的MRI序列和纹理特征。所有诊断均通过组织病理学、实验室分析或MRI确认。

结果

对提取的特征进行处理,以应用进行分类的ML方法。T1加权图像被证明是最佳的分类序列,其中炎症性病变和肿瘤性病变之间的区分具有较高的准确性(0.827)、ROC曲线下面积(0.906)、精度(0.837)和召回率(0.912)。

结论

该算法使用随机森林机器学习分类器,在无造影剂的T1加权图像上获得了能够区分脑肿瘤和炎症性病变的纹理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c5f/7473508/19c6e71f2863/1678-9199-jvatitd-26-e20200011-gf1.jpg

相似文献

1
Inflammatory lesions and brain tumors: is it possible to differentiate them based on texture features in magnetic resonance imaging?
J Venom Anim Toxins Incl Trop Dis. 2020 Sep 4;26:e20200011. doi: 10.1590/1678-9199-JVATITD-2020-0011.
2
Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach.
J Magn Reson Imaging. 2018 Jul;48(1):198-204. doi: 10.1002/jmri.25954. Epub 2018 Jan 17.
4
Multiple analyses suggests texture features can indicate the presence of tumor in the prostate tissue.
Phys Eng Sci Med. 2022 Jun;45(2):525-535. doi: 10.1007/s13246-022-01118-2. Epub 2022 Mar 24.
6
Texture Analysis of Three-Dimensional MRI Images May Differentiate Borderline and Malignant Epithelial Ovarian Tumors.
Korean J Radiol. 2021 Jan;22(1):106-117. doi: 10.3348/kjr.2020.0121. Epub 2020 Sep 10.
7
Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions.
Eur Radiol. 2020 Nov;30(11):6348-6356. doi: 10.1007/s00330-020-06995-3. Epub 2020 Jun 13.
8
MRI-based texture analysis for differentiating pediatric craniofacial rhabdomyosarcoma from infantile hemangioma.
Eur Radiol. 2020 Oct;30(10):5227-5236. doi: 10.1007/s00330-020-06908-4. Epub 2020 May 8.
10
Automatic classification of focal liver lesions based on MRI and risk factors.
PLoS One. 2019 May 16;14(5):e0217053. doi: 10.1371/journal.pone.0217053. eCollection 2019.

引用本文的文献

1
Majority Voting Ensemble of Deep CNNs for Robust MRI-Based Brain Tumor Classification.
Diagnostics (Basel). 2025 Jul 15;15(14):1782. doi: 10.3390/diagnostics15141782.
2
Machine Learning Recognizes Stages of Parkinson's Disease Using Magnetic Resonance Imaging.
Sensors (Basel). 2024 Dec 20;24(24):8152. doi: 10.3390/s24248152.
3
Comparison of MRI Sequences to Predict Mutation Status in Gliomas Using Radiomics-Based Machine Learning.
Biomedicines. 2024 Mar 25;12(4):725. doi: 10.3390/biomedicines12040725.
6
High-Performance Method for Brain Tumor Feature Extraction in MRI Using Complex Network.
Appl Bionics Biomech. 2023 Sep 21;2023:8843488. doi: 10.1155/2023/8843488. eCollection 2023.
7
Clinical Characteristics and Treatment of Infections in the Central Nervous System.
Infect Drug Resist. 2023 Sep 6;16:5899-5909. doi: 10.2147/IDR.S424012. eCollection 2023.
8
Efficient Brain Tumor Detection with Lightweight End-to-End Deep Learning Model.
Cancers (Basel). 2023 May 19;15(10):2837. doi: 10.3390/cancers15102837.

本文引用的文献

1
Application of Radiomics in Central Nervous System Diseases: a Systematic literature review.
Clin Neurol Neurosurg. 2019 Dec;187:105565. doi: 10.1016/j.clineuro.2019.105565. Epub 2019 Oct 16.
2
A lung image reconstruction from computed radiography images as a tool to tuberculosis treatment control.
J Venom Anim Toxins Incl Trop Dis. 2019 Feb 14;25:e144918. doi: 10.1590/1678-9199-JVATITD-1449-18. eCollection 2019.
4
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
5
Diagnostic accuracy of MRI texture analysis for grading gliomas.
J Neurooncol. 2018 Dec;140(3):583-589. doi: 10.1007/s11060-018-2984-4. Epub 2018 Aug 25.
6
Computed tomography-based volumetric tool for standardized measurement of the maxillary sinus.
PLoS One. 2018 Jan 5;13(1):e0190770. doi: 10.1371/journal.pone.0190770. eCollection 2018.
7
Radiomics and radiogenomics in lung cancer: A review for the clinician.
Lung Cancer. 2018 Jan;115:34-41. doi: 10.1016/j.lungcan.2017.10.015. Epub 2017 Nov 8.
8
Application of MRI texture analysis in the study of the posterior fossa tumors growing trend in children.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:620-623. doi: 10.1109/EMBC.2017.8036901.
9
2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution.
MAGMA. 2018 Apr;31(2):285-294. doi: 10.1007/s10334-017-0653-9. Epub 2017 Sep 22.
10
Pyogenic brain abscess with atypical features resembling glioblastoma in advanced MRI imaging.
Radiol Case Rep. 2017 Jan 30;12(2):365-370. doi: 10.1016/j.radcr.2016.12.007. eCollection 2017 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验