Kasap Dilek N G, Mora Nabila Gala Nacul, Blömer David A, Akkurt Burak Han, Heindel Walter Leonhard, Mannil Manoj, Musigmann Manfred
University Clinic for Radiology, University of Münster, University Hospital Münster, Albert-Schweitzer-Campus 1, DE-48149 Münster, Germany.
Biomedicines. 2024 Mar 25;12(4):725. doi: 10.3390/biomedicines12040725.
Regarding the 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumors, the isocitrate dehydrogenase () mutation status is one of the most important factors for CNS tumor classification. The aim of our study is to analyze which of the commonly used magnetic resonance imaging (MRI) sequences is best suited to obtain this information non-invasively using radiomics-based machine learning models. We developed machine learning models based on different MRI sequences and determined which of the MRI sequences analyzed yields the highest discriminatory power in predicting the mutation status.
In our retrospective IRB-approved study, we used the MRI images of 106 patients with histologically confirmed gliomas. The MRI images were acquired using the T1 sequence with and without administration of a contrast agent, the T2 sequence, and the Fluid-Attenuated Inversion Recovery (FLAIR) sequence. To objectively compare performance in predicting the mutation status as a function of the MRI sequence used, we included only patients in our study cohort for whom MRI images of all four sequences were available. Seventy-one of the patients had an mutation, and the remaining 35 patients did not have an mutation ( wild-type). For each of the four MRI sequences used, 107 radiomic features were extracted from the corresponding MRI images by hand-delineated regions of interest. Data partitioning into training data and independent test data was repeated 100 times to avoid random effects associated with the data partitioning. Feature preselection and subsequent model development were performed using Random Forest, Lasso regression, LDA, and Naïve Bayes. The performance of all models was determined with independent test data.
Among the different approaches we examined, the T1-weighted contrast-enhanced sequence was found to be the most suitable for predicting mutations status using radiomics-based machine learning models. Using contrast-enhanced T1-weighted MRI images, our seven-feature model developed with Lasso regression achieved a mean area under the curve (AUC) of 0.846, a mean accuracy of 0.792, a mean sensitivity of 0.847, and a mean specificity of 0.681. The administration of contrast agents resulted in a significant increase in the achieved discriminatory power.
Our analyses show that for the prediction of the mutation status using radiomics-based machine learning models, among the MRI images acquired with the commonly used MRI sequences, the contrast-enhanced T1-weighted images are the most suitable.
关于2021年世界卫生组织(WHO)中枢神经系统(CNS)肿瘤分类,异柠檬酸脱氢酶(IDH)突变状态是CNS肿瘤分类的最重要因素之一。我们研究的目的是分析哪种常用的磁共振成像(MRI)序列最适合使用基于影像组学的机器学习模型无创获取此信息。我们基于不同的MRI序列开发了机器学习模型,并确定所分析的MRI序列中哪一种在预测IDH突变状态时具有最高的判别能力。
在我们经机构审查委员会(IRB)批准的回顾性研究中,我们使用了106例经组织学确诊的胶质瘤患者的MRI图像。MRI图像使用T1序列在注射和未注射造影剂的情况下、T2序列以及液体衰减反转恢复(FLAIR)序列采集。为了客观比较作为所用MRI序列函数的预测IDH突变状态的性能,我们在研究队列中仅纳入了可获得所有四个序列MRI图像的患者。71例患者存在IDH突变,其余35例患者不存在IDH突变(IDH野生型)。对于所使用的四个MRI序列中的每一个,通过手动勾勒感兴趣区域从相应的MRI图像中提取107个影像组学特征。将数据划分为训练数据和独立测试数据重复进行100次,以避免与数据划分相关的随机效应。使用随机森林、套索回归、线性判别分析(LDA)和朴素贝叶斯进行特征预选和后续模型开发。所有模型的性能通过独立测试数据确定。
在我们研究的不同方法中,发现T1加权增强序列最适合使用基于影像组学的机器学习模型预测IDH突变状态。使用增强T1加权MRI图像,我们用套索回归开发的七特征模型的曲线下平均面积(AUC)为0.846,平均准确率为0.792,平均灵敏度为0.847,平均特异性为0.681。注射造影剂导致所实现的判别能力显著提高。
我们的分析表明,对于使用基于影像组学的机器学习模型预测IDH突变状态,在使用常用MRI序列采集的MRI图像中,增强T1加权图像是最合适的。