机器学习利用磁共振成像识别帕金森病的阶段。

Machine Learning Recognizes Stages of Parkinson's Disease Using Magnetic Resonance Imaging.

作者信息

Chudzik Artur

机构信息

Faculty of Computer Science, Polish-Japanese Academy of Information Technology, 86 Koszykowa Street, 02-008 Warsaw, Poland.

出版信息

Sensors (Basel). 2024 Dec 20;24(24):8152. doi: 10.3390/s24248152.

Abstract

Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early detection is crucial for effective intervention strategies, this study investigates whether the structural analysis of selected brain regions, including volumes and their spatial relationships obtained from regular T1-weighted MRI scans ( = 168, PPMI database), can model stages of PD using standard machine learning (ML) techniques. Thus, diverse ML models, including Logistic Regression, Random Forest, Support Vector Classifier, and Rough Sets, were trained and evaluated. Models used volumes, Euclidean, and Cosine distances of subcortical brain structures relative to the thalamus to differentiate among control (HC), prodromal (PR), and PD groups. Based on three separate experiments, the Logistic Regression approach was optimal, providing low feature complexity and strong predictive performance (accuracy: 85%, precision: 88%, recall: 85%) in PD-stage recognition. Using interpretable metrics, such as the volume- and centroid-based spatial distances, models achieved high diagnostic accuracy, presenting a promising framework for early-stage PD identification based on MRI scans.

摘要

神经退行性疾病(NDs),如阿尔茨海默病(AD)和帕金森病(PD),是使人衰弱的疾病,影响着全球数百万人,预计未来几年病例数量将大幅上升。由于早期检测对于有效的干预策略至关重要,本研究调查了从常规T1加权MRI扫描(n = 168,PPMI数据库)获得的选定脑区的结构分析,包括体积及其空间关系,是否可以使用标准机器学习(ML)技术对PD阶段进行建模。因此,对包括逻辑回归、随机森林、支持向量分类器和粗糙集在内的多种ML模型进行了训练和评估。模型使用皮质下脑结构相对于丘脑的体积、欧几里得距离和余弦距离来区分对照组(HC)、前驱期(PR)和PD组。基于三个独立实验,逻辑回归方法是最优的,在PD阶段识别中提供了低特征复杂度和强大的预测性能(准确率:85%,精确率:88%,召回率:85%)。使用基于体积和质心的空间距离等可解释指标,模型实现了高诊断准确率,为基于MRI扫描的早期PD识别提供了一个有前景的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3df4/11679256/86ff41be36f5/sensors-24-08152-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索