Suppr超能文献

常染色体显性阿尔茨海默病病程中的单受试者灰质网络轨迹。

Single-subject grey matter network trajectories over the disease course of autosomal dominant Alzheimer's disease.

作者信息

Vermunt Lisa, Dicks Ellen, Wang Guoqiao, Dincer Aylin, Flores Shaney, Keefe Sarah J, Berman Sarah B, Cash David M, Chhatwal Jasmeer P, Cruchaga Carlos, Fox Nick C, Ghetti Bernardino, Graff-Radford Neill R, Hassenstab Jason, Karch Celeste M, Laske Christoph, Levin Johannes, Masters Colin L, McDade Eric, Mori Hiroshi, Morris John C, Noble James M, Perrin Richard J, Schofield Peter R, Xiong Chengjie, Scheltens Philip, Visser Pieter Jelle, Bateman Randall J, Benzinger Tammie L S, Tijms Betty M, Gordon Brian A

机构信息

Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam, UMC, VU University, Netherlands.

Division of Biostatistics, Washington University in St. Louis, MO, USA.

出版信息

Brain Commun. 2020 Jul 15;2(2):fcaa102. doi: 10.1093/braincomms/fcaa102. eCollection 2020.

Abstract

Structural grey matter covariance networks provide an individual quantification of morphological patterns in the brain. The network integrity is disrupted in sporadic Alzheimer's disease, and network properties show associations with the level of amyloid pathology and cognitive decline. Therefore, these network properties might be disease progression markers. However, it remains unclear when and how grey matter network integrity changes with disease progression. We investigated these questions in autosomal dominant Alzheimer's disease mutation carriers, whose conserved age at dementia onset allows individual staging based upon their estimated years to symptom onset. From the Dominantly Inherited Alzheimer Network observational cohort, we selected T-weighted MRI scans from 269 mutation carriers and 170 non-carriers (mean age 38 ± 15 years, mean estimated years to symptom onset -9 ± 11), of whom 237 had longitudinal scans with a mean follow-up of 3.0 years. Single-subject grey matter networks were extracted, and we calculated for each individual the network properties which describe the network topology, including the size, clustering, path length and small worldness. We determined at which time point mutation carriers and non-carriers diverged for global and regional grey matter network metrics, both cross-sectionally and for rate of change over time. Based on cross-sectional data, the earliest difference was observed in normalized path length, which was decreased for mutation carriers in the precuneus area at 13 years and on a global level 12 years before estimated symptom onset. Based on longitudinal data, we found the earliest difference between groups on a global level 6 years before symptom onset, with a greater rate of decline of network size for mutation carriers. We further compared grey matter network small worldness with established biomarkers for Alzheimer disease (i.e. amyloid accumulation, cortical thickness, brain metabolism and cognitive function). We found that greater amyloid accumulation at baseline was associated with faster decline of small worldness over time, and decline in grey matter network measures over time was accompanied by decline in brain metabolism, cortical thinning and cognitive decline. In summary, network measures decline in autosomal dominant Alzheimer's disease, which is alike sporadic Alzheimer's disease, and the properties show decline over time prior to estimated symptom onset. These data suggest that single-subject networks properties obtained from structural MRI scans form an additional non-invasive tool for understanding the substrate of cognitive decline and measuring progression from preclinical to severe clinical stages of Alzheimer's disease.

摘要

结构灰质协方差网络提供了大脑形态模式的个体量化。在散发性阿尔茨海默病中,网络完整性受到破坏,并且网络属性显示出与淀粉样蛋白病理学水平和认知衰退的关联。因此,这些网络属性可能是疾病进展的标志物。然而,尚不清楚灰质网络完整性何时以及如何随疾病进展而变化。我们在常染色体显性阿尔茨海默病突变携带者中研究了这些问题,他们在痴呆发病时的年龄相对固定,这使得可以根据估计的症状出现年数进行个体分期。从显性遗传阿尔茨海默病网络观察队列中,我们选取了269名突变携带者和170名非携带者(平均年龄38±15岁,平均估计症状出现年数-9±11)的T加权MRI扫描图像,其中237人有纵向扫描图像,平均随访3.0年。提取单受试者灰质网络,并为每个个体计算描述网络拓扑结构的网络属性,包括大小、聚类系数、路径长度和小世界特性。我们确定了突变携带者和非携带者在全局和区域灰质网络指标上在哪个时间点出现差异,包括横断面差异以及随时间变化的速率差异。基于横断面数据,最早观察到的差异在于归一化路径长度,在估计症状出现前13年,楔前叶区域的突变携带者的归一化路径长度降低,在全局水平上则是在估计症状出现前12年降低。基于纵向数据,我们发现在症状出现前6年,两组在全局水平上最早出现差异,突变携带者的网络大小下降速率更大。我们进一步将灰质网络的小世界特性与阿尔茨海默病已有的生物标志物(即淀粉样蛋白积累、皮质厚度、脑代谢和认知功能)进行比较。我们发现基线时更大的淀粉样蛋白积累与小世界特性随时间更快的下降相关,并且灰质网络测量值随时间的下降伴随着脑代谢下降、皮质变薄和认知衰退。总之,常染色体显性阿尔茨海默病中的网络测量值下降,这与散发性阿尔茨海默病相似,并且这些属性在估计症状出现之前就随时间下降。这些数据表明,从结构MRI扫描获得的单受试者网络属性构成了一种额外的非侵入性工具,用于理解认知衰退的基础以及测量从阿尔茨海默病临床前期到严重临床阶段的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验