Suppr超能文献

灰质网络标志物可识别出处于阿尔茨海默病前驱期且临床症状将迅速恶化的个体。

Grey matter network markers identify individuals with prodromal Alzheimer's disease who will show rapid clinical decline.

作者信息

Pelkmans Wiesje, Vromen Ellen M, Dicks Ellen, Scheltens Philip, Teunissen Charlotte E, Barkhof Frederik, van der Flier Wiesje M, Tijms Betty M

机构信息

Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

出版信息

Brain Commun. 2022 Feb 8;4(2):fcac026. doi: 10.1093/braincomms/fcac026. eCollection 2022.

Abstract

Individuals with prodromal Alzheimer's disease show considerable variability in rates of cognitive decline, which hampers the ability to detect potential treatment effects in clinical trials. Prognostic markers to select those individuals who will decline rapidly within a trial time frame are needed. Brain network measures based on grey matter covariance patterns have been associated with future cognitive decline in Alzheimer's disease. In this longitudinal cohort study, we investigated whether cut-offs for grey matter networks could be derived to detect fast disease progression at an individual level. We further tested whether detection was improved by adding other biomarkers known to be associated with future cognitive decline [i.e. CSF tau phosphorylated at threonine 181 (p-tau181) levels and hippocampal volume]. We selected individuals with mild cognitive impairment and abnormal CSF amyloid β levels from the Amsterdam Dementia Cohort and the Alzheimer's Disease Neuroimaging Initiative, when they had available baseline structural MRI and clinical follow-up. The outcome was progression to dementia within 2 years. We determined prognostic cut-offs for grey matter network properties (gamma, lambda and small-world coefficient) using time-dependent receiver operating characteristic analysis in the Amsterdam Dementia Cohort. We tested the generalization of cut-offs in the Alzheimer's Disease Neuroimaging Initiative, using logistic regression analysis and classification statistics. We further tested whether combining these with CSF p-tau181 and hippocampal volume improved the detection of fast decliners. We observed that within 2 years, 24.6% (Amsterdam Dementia Cohort,  = 244) and 34.0% (Alzheimer's Disease Neuroimaging Initiative,  = 247) of prodromal Alzheimer's disease patients progressed to dementia. Using the grey matter network cut-offs for progression, we could detect fast progressors with 65% accuracy in the Alzheimer's Disease Neuroimaging Initiative. Combining grey matter network measures with CSF p-tau and hippocampal volume resulted in the best model fit for classification of rapid decliners, increasing detecting accuracy to 72%. These data suggest that single-subject grey matter connectivity networks indicative of a more random network organization can contribute to identifying prodromal Alzheimer's disease individuals who will show rapid disease progression. Moreover, we found that combined with p-tau and hippocampal volume this resulted in the highest accuracy. This could facilitate clinical trials by increasing chances to detect effects on clinical outcome measures.

摘要

前驱期阿尔茨海默病患者的认知衰退速度存在很大差异,这阻碍了在临床试验中检测潜在治疗效果的能力。因此需要有预后标志物来筛选出在试验时间范围内会迅速衰退的个体。基于灰质协方差模式的脑网络测量已被证明与阿尔茨海默病未来的认知衰退有关。在这项纵向队列研究中,我们调查了是否可以得出灰质网络的临界值,以便在个体水平上检测疾病的快速进展。我们还进一步测试了通过添加其他已知与未来认知衰退相关的生物标志物[即脑脊液中苏氨酸181位点磷酸化的tau蛋白(p-tau181)水平和海马体积],是否能提高检测效果。我们从阿姆斯特丹痴呆队列和阿尔茨海默病神经影像倡议组织中选取了轻度认知障碍且脑脊液淀粉样β水平异常的个体,这些个体有可用的基线结构MRI和临床随访数据。研究结果是在2年内发展为痴呆症。我们在阿姆斯特丹痴呆队列中使用时间依赖性受试者工作特征分析来确定灰质网络属性(γ、λ和小世界系数)的预后临界值。我们在阿尔茨海默病神经影像倡议组织中使用逻辑回归分析和分类统计来测试临界值的通用性。我们还进一步测试了将这些临界值与脑脊液p-tau18和海马体积相结合是否能提高对快速衰退者的检测能力。我们观察到,在前驱期阿尔茨海默病患者中,24.6%(阿姆斯特丹痴呆队列,n = 244)和34.0%(阿尔茨海默病神经影像倡议组织,n = 247)在2年内发展为痴呆症。使用灰质网络进展临界值,我们在阿尔茨海默病神经影像倡议组织中能够以65%的准确率检测出快速进展者。将灰质网络测量与脑脊液p-tau和海马体积相结合,得到了最适合快速衰退者分类的模型,检测准确率提高到了72%。这些数据表明,指示更随机网络组织的单受试者灰质连接网络有助于识别将出现快速疾病进展的前驱期阿尔茨海默病个体。此外,我们发现将其与p-tau和海马体积相结合能得到最高的准确率。这可以通过增加检测对临床结局指标影响的机会来促进临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b02a/8924646/c1f609e7fede/fcac026ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验