Yin Jie, Jin Jing, Lu Min, Huang Bolong, Zhang Hong, Peng Yong, Xi Pinxian, Yan Chun-Hua
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong, SAR, China.
J Am Chem Soc. 2020 Oct 28;142(43):18378-18386. doi: 10.1021/jacs.0c05050. Epub 2020 Sep 30.
Simultaneous realization of improved activity, enhanced stability, and reduced cost remains a desirable yet challenging goal in the search of electrocatalysis oxygen evolution reaction (OER) in acid. Herein, we report a novel strategy to prepare iridium single-atoms (Ir-SAs) on ultrathin NiCoO porous nanosheets (Ir-NiCoO NSs) by the co-electrodeposition method. The surface-exposed Ir-SAs couplings with oxygen vacancies (V) exhibit boosting the catalysts OER activity and stability in acid media. They display superior OER performance with an ultralow overpotential of 240 mV at = 10 mA cm and long-term stability of 70 h in acid media. The TOFs of 1.13 and 6.70 s at an overpotential of 300 and 370 mV also confirm their remarkable performance. Density functional theory (DFT) calculations reveal that the prominent OER performance arises from the surface electronic exchange-and-transfer activities contributed by atomic Ir incorporation on the intrinsic V existed NiCoO surface. The atomic Ir sites substantially elevate the electronic activity of surface lower coordinated Co sites nearby V, which facilitate the surface electronic exchange-and-transfer capabilities. With this trend, the preferred HO activation and stabilized *O have been reached toward competitively lower overpotential. This is a generalized key for optimally boosting OER performance.
在酸性条件下寻找用于电催化析氧反应(OER)的过程中,同时实现活性提高、稳定性增强和成本降低仍然是一个理想但具有挑战性的目标。在此,我们报道了一种通过共电沉积法在超薄NiCoO多孔纳米片(Ir-NiCoO NSs)上制备铱单原子(Ir-SAs)的新策略。表面暴露的Ir-SAs与氧空位(V)耦合,在酸性介质中表现出提高催化剂的OER活性和稳定性。它们在 = 10 mA cm时具有240 mV的超低过电位,在酸性介质中具有70小时的长期稳定性,表现出优异的OER性能。在300和370 mV过电位下的TOF分别为1.13和6.70 s,也证实了它们的卓越性能。密度泛函理论(DFT)计算表明,显著的OER性能源于在本征V存在的NiCoO表面上引入原子Ir所贡献的表面电子交换和转移活性。原子Ir位点显著提高了V附近表面低配位Co位点的电子活性,这促进了表面电子交换和转移能力。按照这种趋势,已实现了对HO的优先活化和对*O的稳定化,从而实现了具有竞争力的更低过电位。这是优化提高OER性能的一个通用关键。