Suppr超能文献

基于融合特征的眼底图像糖尿病视网膜病变自动检测

Automated detection of diabetic retinopathy in fundus images using fused features.

机构信息

Electrical Engineering Department, University of Engineering and Technology, Taxila, Pakistan.

出版信息

Phys Eng Sci Med. 2020 Dec;43(4):1253-1264. doi: 10.1007/s13246-020-00929-5. Epub 2020 Sep 21.

Abstract

Diabetic retinopathy (DR) is one of the severe eye conditions due to diabetes complication which can lead to vision loss if left untreated. In this paper, a computationally simple, yet very effective, DR detection method is proposed. First, a segmentation independent two-stage preprocessing based technique is proposed which can effectively extract DR pathognomonic signs; both bright and red lesions, and blood vessels from the eye fundus image. Then, the performance of Local Binary Patterns (LBP), Local Ternary Patterns (LTP), Dense Scale-Invariant Feature Transform (DSIFT) and Histogram of Oriented Gradients (HOG) as a feature descriptor for fundus images, is thoroughly analyzed. SVM kernel-based classifiers are trained and tested, using a 5-fold cross-validation scheme, on both newly acquired fundus image database from the local hospital and combined database created from the open-sourced available databases. The classification accuracy of 96.6% with 0.964 sensitivity and 0.969 specificity is achieved using a Cubic SVM classifier with LBP and LTP fused features for the local database. More importantly, in out-of-sample testing on the combined database, the model gives an accuracy of 95.21% with a sensitivity of 0.970 and specificity of 0.932. This indicates the proposed model is very well-fitted and generalized which is further corroborated by the presented train-test curves.

摘要

糖尿病性视网膜病变(DR)是一种严重的眼部疾病,是糖尿病并发症之一,如果不及时治疗,可能会导致视力丧失。本文提出了一种计算简单但非常有效的 DR 检测方法。首先,提出了一种分割独立的两阶段预处理技术,该技术可以有效地从眼底图像中提取 DR 特有征象;明亮和红色病变以及血管。然后,对局部二值模式(LBP)、局部三元模式(LTP)、密集尺度不变特征变换(DSIFT)和方向梯度直方图(HOG)作为眼底图像的特征描述符的性能进行了深入分析。使用 5 折交叉验证方案,在本地医院新采集的眼底图像数据库和从开源可用数据库创建的组合数据库上训练和测试 SVM 核分类器。使用立方 SVM 分类器融合 LBP 和 LTP 特征,对本地数据库的分类准确率为 96.6%,灵敏度为 0.964,特异性为 0.969。更重要的是,在组合数据库的样本外测试中,该模型的准确率为 95.21%,灵敏度为 0.970,特异性为 0.932。这表明所提出的模型拟合和泛化效果非常好,呈现的训练-测试曲线进一步证实了这一点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验