Suppr超能文献

DRSegNet:一种使用参数感知自然启发式优化的糖尿病视网膜病变分割与分类前沿方法。

DRSegNet: A cutting-edge approach to Diabetic Retinopathy segmentation and classification using parameter-aware Nature-Inspired optimization.

作者信息

Kamal Sundreen Asad, Du Youtian, Khalid Majdi, Farrash Majed, Dhelim Sahraoui

机构信息

School of Electronics and Information Technology, Xi'an Jiaotong University, Xian, China.

Department of Computer Science and Artificial Intelligence, College of Computing, Umm Al-Qura University, Makkah, Saudi Arabia.

出版信息

PLoS One. 2024 Dec 5;19(12):e0312016. doi: 10.1371/journal.pone.0312016. eCollection 2024.

Abstract

Diabetic retinopathy (DR) is a prominent reason of blindness globally, which is a diagnostically challenging disease owing to the intricate process of its development and the human eye's complexity, which consists of nearly forty connected components like the retina, iris, optic nerve, and so on. This study proposes a novel approach to the identification of DR employing methods such as synthetic data generation, K- Means Clustering-Based Binary Grey Wolf Optimizer (KCBGWO), and Fully Convolutional Encoder-Decoder Networks (FCEDN). This is achieved using Generative Adversarial Networks (GANs) to generate high-quality synthetic data and transfer learning for accurate feature extraction and classification, integrating these with Extreme Learning Machines (ELM). The substantial evaluation plan we have provided on the IDRiD dataset gives exceptional outcomes, where our proposed model gives 99.87% accuracy and 99.33% sensitivity, while its specificity is 99. 78%. This is why the outcomes of the presented study can be viewed as promising in terms of the further development of the proposed approach for DR diagnosis, as well as in creating a new reference point within the framework of medical image analysis and providing more effective and timely treatments.

摘要

糖尿病视网膜病变(DR)是全球失明的一个主要原因,由于其发展过程复杂且人眼结构复杂(人眼由近四十个相互连接的部分组成,如视网膜、虹膜、视神经等),它是一种诊断具有挑战性的疾病。本研究提出了一种识别糖尿病视网膜病变的新方法,采用了合成数据生成、基于K均值聚类的二进制灰狼优化器(KCBGWO)和全卷积编码器 - 解码器网络(FCEDN)等方法。这是通过生成对抗网络(GANs)生成高质量的合成数据,并使用迁移学习进行准确的特征提取和分类,再将这些与极限学习机(ELM)相结合来实现的。我们在IDRiD数据集上提供的大量评估方案取得了优异的成果,我们提出的模型准确率达到99.87%,灵敏度为99.33%,而其特异性为99.78%。这就是为什么就糖尿病视网膜病变诊断所提出方法的进一步发展而言,以及在医学图像分析框架内创建一个新的参考点并提供更有效、及时的治疗方面,本研究的结果可被视为很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c33/11620556/7adbfd4f1c41/pone.0312016.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验