Institute of Research and Innovation in Bioengineering, I3B, Universitat Politècnica de València, 46022 Valencia, Spain.
Departamento de Comunicaciones, ITEAM Research Institute, Universitat Politècnica de València, 46022 Valencia, Spain.
Sensors (Basel). 2020 Feb 13;20(4):1005. doi: 10.3390/s20041005.
Estimated blind people in the world will exceed 40 million by 2025. To develop novel algorithms based on fundus image descriptors that allow the automatic classification of retinal tissue into healthy and pathological in early stages is necessary. In this paper, we focus on one of the most common pathologies in the current society: diabetic retinopathy. The proposed method avoids the necessity of lesion segmentation or candidate map generation before the classification stage. Local binary patterns and granulometric profiles are locally computed to extract texture and morphological information from retinal images. Different combinations of this information feed classification algorithms to optimally discriminate bright and dark lesions from healthy tissues. Through several experiments, the ability of the proposed system to identify diabetic retinopathy signs is validated using different public databases with a large degree of variability and without image exclusion.
到 2025 年,全球预估盲人将超过 4000 万。为了开发基于眼底图像描述符的新型算法,以实现视网膜组织在早期自动分类为健康和病理状态,这是非常有必要的。在本文中,我们专注于当前社会中最常见的一种病症:糖尿病性视网膜病变。所提出的方法避免了在分类阶段之前进行病变分割或候选图生成的必要性。局部二值模式和粒度分布被局部计算,以从视网膜图像中提取纹理和形态信息。通过对这些信息的不同组合,为分类算法提供输入,以最佳地将亮和暗病变与健康组织区分开来。通过多项实验,使用具有较大变异性且无需图像排除的不同公共数据库,验证了所提出的系统识别糖尿病性视网膜病变特征的能力。