Mirjalili Vahid, Raschka Sebastian, Ross Arun
IEEE Trans Image Process. 2020 Sep 21;PP. doi: 10.1109/TIP.2020.3024026.
Recent research has established the possibility of deducing soft-biometric attributes such as age, gender and race from an individual's face image with high accuracy. However, this raises privacy concerns, especially when face images collected for biometric recognition purposes are used for attribute analysis without the person's consent. To address this problem, we develop a technique for imparting soft biometric privacy to face images via an image perturbation methodology. The image perturbation is undertaken using a GAN-based Semi-Adversarial Network (SAN) - referred to as PrivacyNet - that modifies an input face image such that it can be used by a face matcher for matching purposes but cannot be reliably used by an attribute classifier. Further, PrivacyNet allows a person to choose specific attributes that have to be obfuscated in the input face images (e.g., age and race), while allowing for other types of attributes to be extracted (e.g., gender). Extensive experiments using multiple face matchers, multiple age/gender/race classifiers, and multiple face datasets demonstrate the generalizability of the proposed multi-attribute privacy enhancing method across multiple face and attribute classifiers.
最近的研究已经证实,从个人面部图像中高精度推断年龄、性别和种族等软生物特征属性是可能的。然而,这引发了隐私问题,尤其是当为生物特征识别目的收集的面部图像未经个人同意就用于属性分析时。为了解决这个问题,我们开发了一种通过图像扰动方法为面部图像赋予软生物特征隐私的技术。图像扰动是使用基于生成对抗网络(GAN)的半对抗网络(SAN)——称为PrivacyNet——来进行的,它会修改输入的面部图像,使其能够被面部匹配器用于匹配目的,但不能被属性分类器可靠地用于分析。此外,PrivacyNet允许个人选择必须在输入面部图像中模糊处理的特定属性(例如年龄和种族),同时允许提取其他类型的属性(例如性别)。使用多个面部匹配器、多个年龄/性别/种族分类器和多个面部数据集进行的大量实验证明了所提出的多属性隐私增强方法在多个面部和属性分类器中的通用性。