Suppr超能文献

基于机器学习和人工智能的生物活性配体发现和 GPCR 配体识别方法。

Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition.

机构信息

University of Wisconsin-Madison, Department of Statistics, United States.

University of Wisconsin-Madison, Department of Biostatistics and Medical Informatics, United States.

出版信息

Methods. 2020 Aug 1;180:89-110. doi: 10.1016/j.ymeth.2020.06.016. Epub 2020 Jul 6.

Abstract

In the last decade, machine learning and artificial intelligence applications have received a significant boost in performance and attention in both academic research and industry. The success behind most of the recent state-of-the-art methods can be attributed to the latest developments in deep learning. When applied to various scientific domains that are concerned with the processing of non-tabular data, for example, image or text, deep learning has been shown to outperform not only conventional machine learning but also highly specialized tools developed by domain experts. This review aims to summarize AI-based research for GPCR bioactive ligand discovery with a particular focus on the most recent achievements and research trends. To make this article accessible to a broad audience of computational scientists, we provide instructive explanations of the underlying methodology, including overviews of the most commonly used deep learning architectures and feature representations of molecular data. We highlight the latest AI-based research that has led to the successful discovery of GPCR bioactive ligands. However, an equal focus of this review is on the discussion of machine learning-based technology that has been applied to ligand discovery in general and has the potential to pave the way for successful GPCR bioactive ligand discovery in the future. This review concludes with a brief outlook highlighting the recent research trends in deep learning, such as active learning and semi-supervised learning, which have great potential for advancing bioactive ligand discovery.

摘要

在过去的十年中,机器学习和人工智能应用在学术研究和工业界都取得了显著的性能和关注度的提升。最近的大多数最先进方法的成功可以归因于深度学习的最新发展。当应用于涉及非表格数据处理的各种科学领域,例如图像或文本时,深度学习不仅在性能上优于传统的机器学习,而且在性能上也优于领域专家开发的高度专业化工具。

本综述旨在总结基于人工智能的 GPCR 生物活性配体发现研究,特别关注最新的成就和研究趋势。为了使这篇文章能够被广大计算科学家所接受,我们提供了对基础方法学的有益解释,包括最常用的深度学习架构和分子数据特征表示的概述。我们强调了最近基于人工智能的研究,这些研究导致了 GPCR 生物活性配体的成功发现。然而,本综述的重点同样在于讨论已应用于配体发现的基于机器学习的技术,这些技术有可能为未来成功发现 GPCR 生物活性配体铺平道路。

本文最后简要展望了深度学习的最新研究趋势,例如主动学习和半监督学习,它们在推进生物活性配体发现方面具有巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cf2/8457393/beae1d5497fa/nihms-1739938-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验