Suppr超能文献

使用多任务卷积神经网络进行面部属性估计

Face Attribute Estimation Using Multi-Task Convolutional Neural Network.

作者信息

Kawai Hiroya, Ito Koichi, Aoki Takafumi

机构信息

Graduate School of Information Sciences, Tohoku University, 6-6-05, Aramaki Aza Aoba, Sendai 9808579, Japan.

出版信息

J Imaging. 2022 Apr 10;8(4):105. doi: 10.3390/jimaging8040105.

Abstract

Face attribute estimation can be used for improving the accuracy of face recognition, customer analysis in marketing, image retrieval, video surveillance, and criminal investigation. The major methods for face attribute estimation are based on Convolutional Neural Networks (CNNs) that solve face attribute estimation as a multiple two-class classification problem. Although one feature extractor should be used for each attribute to explore the accuracy of attribute estimation, in most cases, one feature extractor is shared to estimate all face attributes for the parameter efficiency. This paper proposes a face attribute estimation method using Merged Multi-CNN (MM-CNN) to automatically optimize CNN structures for solving multiple binary classification problems to improve parameter efficiency and accuracy in face attribute estimation. We also propose a parameter reduction method called Convolutionalization for Parameter Reduction (CPR), which removes all fully connected layers from MM-CNNs. Through a set of experiments using the CelebA and LFW-a datasets, we demonstrate that MM-CNN with CPR exhibits higher efficiency of face attribute estimation in terms of estimation accuracy and the number of weight parameters than conventional methods.

摘要

面部属性估计可用于提高人脸识别的准确性、市场营销中的客户分析、图像检索、视频监控和刑事调查。面部属性估计的主要方法基于卷积神经网络(CNN),该网络将面部属性估计作为多个二分类问题来解决。尽管每个属性都应使用一个特征提取器来探索属性估计的准确性,但在大多数情况下,为了参数效率,会共享一个特征提取器来估计所有面部属性。本文提出了一种使用合并多卷积神经网络(MM-CNN)的面部属性估计方法,以自动优化CNN结构来解决多个二分类问题,从而提高面部属性估计中的参数效率和准确性。我们还提出了一种称为参数约简卷积化(CPR)的参数约简方法,该方法从MM-CNN中移除所有全连接层。通过使用CelebA和LFW-a数据集进行的一组实验表明,与传统方法相比,带有CPR的MM-CNN在估计准确性和权重参数数量方面表现出更高的面部属性估计效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05fb/9031811/147ece11c120/jimaging-08-00105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验