Bratek Ewelina, Ziembowicz Apolonia, Salinska Elzbieta
Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
Antioxidants (Basel). 2020 Sep 17;9(9):877. doi: 10.3390/antiox9090877.
-acetylaspartylglutamate (NAAG), the most abundant peptide transmitter in the mammalian nervous system, activates mGluR3 at presynaptic sites, inhibiting the release of glutamate, and acts on mGluR3 on astrocytes, stimulating the release of neuroprotective growth factors (TGF-β). NAAG can also affect -methyl-d-aspartate (NMDA) receptors in both synaptic and extrasynaptic regions. NAAG reduces neurodegeneration in a neonatal rat model of hypoxia-ischemia (HI), although the exact mechanism is not fully recognized. In the present study, the effect of NAAG application 24 or 1 h before experimental birth asphyxia on oxidative stress markers and the potential mechanisms of neuroprotection on 7-day old rats was investigated. The intraperitoneal application of NAAG at either time point before HI significantly reduced the weight deficit of the ischemic brain hemisphere, radical oxygen species (ROS) content and activity of antioxidant enzymes, and increased the concentration of reduced glutathione (GSH). No additional increase in the TGF-β concentration was observed after NAAG application. The fast metabolism of NAAG and the decrease in TGF-β concentration that resulted from NAAG pretreatment, performed up to 24 h before HI, excluded the involvement mGluR3 in neuroprotection. The observed effect may be explained by the activation of NMDA receptors induced by NAAG pretreatment 24 h before HI. Inhibition of the NAAG effect by memantine supports this conclusion. NAAG preconditioning 1 h before HI results in a mixture of mGluR3 and NMDA receptor activation. Preconditioning with NAAG induces the antioxidative defense system triggered by mild excitotoxicity in neurons. Moreover, this response to NAAG pretreatment is consistent with the commonly accepted mechanism of preconditioning. However, this theory requires further investigation.
N-乙酰天门冬氨酰谷氨酸(NAAG)是哺乳动物神经系统中含量最为丰富的肽类递质,它在突触前位点激活代谢型谷氨酸受体3(mGluR3),抑制谷氨酸的释放,并作用于星形胶质细胞上的mGluR3,刺激神经保护生长因子(转化生长因子-β,TGF-β)的释放。NAAG还可影响突触和突触外区域的N-甲基-D-天门冬氨酸(NMDA)受体。NAAG可减轻新生大鼠缺氧缺血(HI)模型中的神经退行性变,尽管其确切机制尚未完全明确。在本研究中,我们调查了在实验性出生窒息前24小时或1小时应用NAAG对7日龄大鼠氧化应激标志物的影响以及神经保护的潜在机制。在HI之前的任一时刻腹腔注射NAAG均可显著减轻缺血脑半球的重量缺失、活性氧(ROS)含量及抗氧化酶活性,并增加还原型谷胱甘肽(GSH)的浓度。应用NAAG后未观察到TGF-β浓度的进一步升高。在HI前长达24小时进行的NAAG预处理导致的NAAG快速代谢及TGF-β浓度降低排除了mGluR3参与神经保护作用。观察到的效应可能是由HI前24小时NAAG预处理诱导的NMDA受体激活所解释。美金刚抑制NAAG的效应支持了这一结论。HI前1小时进行NAAG预处理会导致mGluR3和NMDA受体激活的混合情况。用NAAG进行预处理可诱导由神经元轻度兴奋毒性触发的抗氧化防御系统。此外,这种对NAAG预处理的反应与普遍接受的预处理机制一致。然而,这一理论需要进一步研究。