Suppr超能文献

用于实时细胞监测的可拉伸有孔金生物传感电极的设计。

Design of Stretchable Holey Gold Biosensing Electrode for Real-Time Cell Monitoring.

机构信息

Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.

New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia.

出版信息

ACS Sens. 2020 Oct 23;5(10):3165-3171. doi: 10.1021/acssensors.0c01297. Epub 2020 Oct 2.

Abstract

In bioelectronics, gold thin films have been widely used as sensing electrodes for probing biological events due to their high conductivity, chemical inertness, biocompatibility, wide electrochemical window, and facile surface modification. However, they are intrinsically not stretchable, which limits their applications in detecting biological reactions when a soft biological system is mechanically deformed. Here, we report on a nanosphere lithography-based strategy to generate ordered microhole gold thin-film electrodes supported by elastomeric substrates. Both experimental and theoretical studies show that the presence of microholes substantially suppresses the catastrophic crack propagation-the main reason for electrical failure for a continuous gold film. As a result, the holey gold film achieves a ∼94% stretchable limit, after which the conductivity is lost, in contrast to ∼4% for the nonstructured counterpart. Furthermore, the pinhole gold electrode is successfully used to monitor the HO released from living cells under dynamic stretching conditions.

摘要

在生物电子学中,由于金具有高导电性、化学惰性、生物相容性、宽电化学窗口和易于表面修饰等特点,因此金薄膜被广泛用作探测生物事件的传感电极。然而,金本身不具有弹性,这限制了其在探测软生物系统在机械变形时的生物反应中的应用。在这里,我们报告了一种基于纳米球光刻的策略,用于在弹性基底上生成有序微孔金薄膜电极。实验和理论研究都表明,微孔的存在极大地抑制了灾难性裂纹的扩展——这是连续金膜电失效的主要原因。结果,有孔金薄膜实现了约 94%的可拉伸极限,之后导电性丧失,相比之下,无结构的金薄膜的可拉伸极限约为 4%。此外,金电极还成功地用于在动态拉伸条件下监测活细胞中 HO 的释放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验