Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
School of Medicine, Shanghai University, Shanghai, China.
Int J Audiol. 2021 Apr;60(4):263-273. doi: 10.1080/14992027.2020.1821252. Epub 2020 Sep 22.
This study aimed to maximise the ability of stimulus-frequency otoacoustic emissions (SFOAEs) to predict hearing status and thresholds based on machine-learning models.
SFOAE data and audiometric thresholds were collected at octave frequencies from 0.5 to 8 kHz. Support vector machine, k-nearest neighbour, back propagation neural network, decision tree, and random forest algorithms were used to build classification models for status identification and to develop regression models for threshold prediction.
About 230 ears with normal hearing and 737 ears with sensorineural hearing loss.
All classification models yielded areas under the receiver operating characteristic curve of 0.926-0.994 at 0.5-8 kHz, superior to the previous SFOAE study. The regression models produced lower standard errors (8.1-12.2 dB, mean absolute errors: 5.53-8.97 dB) as compared to those for distortion-product and transient-evoked otoacoustic emissions previously reported (8.6-19.2 dB).
SFOAEs using machine-learning approaches offer promising tools for the prediction of hearing capabilities, at least at 0.5-4 kHz. Future research may focus on further improvements in accuracy and reductions in test time to improve clinical utility.
本研究旨在通过机器学习模型,最大限度地提高刺激频率耳声发射(SFOAE)预测听力状态和阈值的能力。
在 0.5 至 8 kHz 的倍频程频率上收集 SFOAE 数据和听力阈值。支持向量机、k-最近邻、反向传播神经网络、决策树和随机森林算法被用于建立用于状态识别的分类模型,并开发用于预测阈值的回归模型。
约 230 只正常听力耳和 737 只感音神经性听力损失耳。
所有分类模型在 0.5-8 kHz 频率范围内的受试者工作特征曲线下面积为 0.926-0.994,优于之前的 SFOAE 研究。与之前报道的畸变产物耳声发射和瞬态诱发耳声发射的回归模型相比,这些回归模型产生的标准误差更低(8.1-12.2 dB,平均绝对误差:5.53-8.97 dB)。
使用机器学习方法的 SFOAE 为预测听力能力提供了有前途的工具,至少在 0.5-4 kHz 范围内是如此。未来的研究可能集中在进一步提高准确性和减少测试时间上,以提高临床实用性。