Department of Physics, University of California, Merced, CA 95343.
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
Proc Natl Acad Sci U S A. 2021 Dec 28;118(52). doi: 10.1073/pnas.2117107118.
Dynamic lane formation and long-range active nematic alignment are reported using a geometry in which kinesin motors are directly coupled to a lipid bilayer, allowing for in-plane motor diffusion during microtubule gliding. We use fluorescence microscopy to image protein distributions in and below the dense two-dimensional microtubule layer, revealing evidence of diffusion-enabled kinesin restructuring within the fluid membrane substrate as microtubules collectively glide above. We find that the lipid membrane acts to promote filament-filament alignment within the gliding layer, enhancing the formation of a globally aligned active nematic state. We also report the emergence of an intermediate, locally ordered state in which apolar dynamic lanes of nematically aligned microtubules migrate across the substrate. To understand this emergent behavior, we implement a continuum model obtained from coarse graining a collection of self-propelled rods, with propulsion set by the local motor kinetics. Tuning the microtubule and kinesin concentrations as well as active propulsion in these simulations reveals that increasing motor activity promotes dynamic nematic lane formation. Simulations and experiments show that, following fluid bilayer substrate mediated spatial motor restructuring, the total motor concentration becomes enriched below the microtubule lanes that they drive, with the feedback leading to more dynamic lanes. Our results have implications for membrane-coupled active nematics in vivo as well as for engineering dynamic and reconfigurable materials where the structural elements and power sources can dynamically colocalize, enabling efficient mechanical work.
报道了一种使用肌球蛋白马达直接耦合到脂质双层的方法,实现了微管滑动过程中平面内马达扩散,从而产生动态车道形成和长程主动向列排列。我们使用荧光显微镜来观察密集二维微管层内和下方的蛋白质分布,揭示了在微管集体滑过上方时,在流体膜基质中扩散驱动的肌球蛋白重排的证据。我们发现,脂质膜促进了滑层内的纤维-纤维排列,增强了整体对齐的主动向列状态的形成。我们还报告了一种中间的局部有序状态的出现,其中无极性的动态向列微管沿基质迁移。为了理解这种新兴行为,我们通过对一组自推进棒进行粗粒化来实现一个连续统模型,其中推进由局部马达动力学设定。在这些模拟中调整微管和肌球蛋白浓度以及主动推进表明,增加马达活性促进动态向列车道形成。模拟和实验表明,在流体双层基质介导的空间马达重构之后,总马达浓度在它们驱动的微管车道下方富集,反馈导致更多动态车道的形成。我们的结果对体内膜耦合主动向列以及对动态和可重构材料的工程学具有重要意义,在这些材料中,结构元件和动力源可以动态地局部化,从而实现高效的机械工作。