Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States.
IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States.
Environ Sci Technol. 2020 Oct 20;54(20):12967-12978. doi: 10.1021/acs.est.0c02328. Epub 2020 Oct 6.
Effluent-dominated streams are becoming increasingly common in temperate regions and generate complex pharmaceutical mixture exposure conditions that may impact aquatic organisms via drug-drug interactions. Here, we quantified spatiotemporal pharmaceutical exposure concentrations and composition mixture dynamics during baseflow conditions at four sites in a temperate-region effluent-dominated stream (upstream, at, and progressively downstream from effluent discharge). Samples were analyzed monthly for 1 year for 109 pharmaceuticals/degradates using a comprehensive U.S. Geological Survey analytical method and biweekly for 2 years focused on 14 most common pharmaceuticals/degradates. We observed a strong chemical gradient with pharmaceuticals only sporadically detected upstream from the effluent. Seventy-four individual pharmaceuticals/degradates were detected, spanning 5 orders of magnitude from 0.28 to 13 500 ng/L, with 38 compounds detected in >50% of samples. "Biweekly" compounds represented 77 ± 8% of the overall pharmaceutical concentration. The antidiabetic drug metformin consistently had the highest concentration with limited in-stream attenuation. The antihistamine drug fexofenadine inputs were greater during warm- than cool-season conditions but also attenuated faster. Differential attenuation of individual pharmaceuticals (i.e., high = citalopram; low = metformin) contributed to complex mixture evolution along the stream reach. This research demonstrates that variable inputs over multiple years and differential in-stream attenuation of individual compounds generate evolving complex mixture exposure conditions for biota, with implications for interactive effects.
受污水体在温带地区越来越常见,产生了复杂的药物混合暴露条件,这些条件可能通过药物相互作用影响水生生物。在这里,我们在温带受污水体的四个地点(上游、在污水排放处和从污水排放处逐渐下游)的基流条件下,量化了时空药物暴露浓度和组成混合物动态。在一年的时间里,我们每月对 109 种药物/降解物进行了分析,使用了全面的美国地质调查分析方法,在两年的时间里,我们每两周对 14 种最常见的药物/降解物进行了分析。我们观察到一个很强的化学梯度,在污水排放处的上游很少检测到药物。我们检测到 74 种单独的药物/降解物,跨越 5 个数量级,浓度范围为 0.28 至 13500ng/L,其中 38 种化合物在 50%以上的样本中被检测到。“双周”化合物占总药物浓度的 77±8%。抗糖尿病药物二甲双胍的浓度一直最高,在河流中衰减有限。在温暖季节条件下,抗组胺药物特非那定的输入量大于凉爽季节,但衰减速度也更快。个别药物的差异衰减(即高=西酞普兰;低=二甲双胍)导致了沿河流段复杂混合物的演变。这项研究表明,多年来的可变输入和个别化合物在河流中的差异衰减,为生物群产生了不断变化的复杂混合物暴露条件,这对相互作用的影响有影响。