Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, Groningen 9700 CC, The Netherlands.
Syst Biol. 2021 Apr 15;70(3):463-479. doi: 10.1093/sysbio/syaa072.
Models of trait evolution form an important part of macroevolutionary biology. The Brownian motion model and Ornstein-Uhlenbeck models have become classic (null) models of character evolution, in which species evolve independently. Recently, models incorporating species interactions have been developed, particularly involving competition where abiotic factors pull species toward an optimal trait value and competitive interactions drive the trait values apart. However, these models assume a fitness function rather than derive it from population dynamics and they do not consider dynamics of the trait variance. Here, we develop a general coherent trait evolution framework where the fitness function is based on a model of population dynamics, and therefore it can, in principle, accommodate any type of species interaction. We illustrate our framework with a model of abundance-dependent competitive interactions against a macroevolutionary background encoded in a phylogenetic tree. We develop an inference tool based on Approximate Bayesian Computation and test it on simulated data (of traits at the tips). We find that inference performs well when the diversity predicted by the parameters equals the number of species in the phylogeny. We then fit the model to empirical data of baleen whale body lengths, using three different summary statistics, and compare it to a model without population dynamics and a model where competition depends on the total metabolic rate of the competitors. We show that the unweighted model performs best for the least informative summary statistic, while the model with competition weighted by the total metabolic rate fits the data slightly better than the other two models for the two more informative summary statistics. Regardless of the summary statistic used, the three models substantially differ in their predictions of the abundance distribution. Therefore, data on abundance distributions will allow us to better distinguish the models from one another, and infer the nature of species interactions. Thus, our framework provides a conceptual approach to reveal species interactions underlying trait evolution and identifies the data needed to do so in practice. [Approximate Bayesian computation; competition; phylogeny; population dynamics; simulations; species interaction; trait evolution.].
性状进化模型是宏观进化生物学的重要组成部分。布朗运动模型和奥恩斯坦-乌伦贝克模型已成为性状进化的经典(零假设)模型,在这些模型中,物种是独立进化的。最近,已经开发出了包含物种相互作用的模型,特别是涉及竞争的模型,其中生物因素将物种拉向最优性状值,而竞争相互作用则使性状值分离。然而,这些模型假设了一个适合度函数,而不是从种群动态中推导出它,并且它们不考虑性状方差的动态。在这里,我们开发了一个通用的连贯性状进化框架,其中适合度函数基于种群动态模型,因此它原则上可以适应任何类型的物种相互作用。我们使用基于系统发育树编码的丰度依赖竞争相互作用模型来说明我们的框架。我们开发了一种基于近似贝叶斯计算的推断工具,并在模拟数据(尖端性状)上进行了测试。我们发现,当参数预测的多样性等于系统发育树中的物种数量时,推断效果很好。然后,我们使用三种不同的摘要统计数据将模型拟合到长须鲸体长的经验数据中,并将其与没有种群动态的模型和竞争取决于竞争者总代谢率的模型进行比较。我们表明,无权重模型对于信息量最少的摘要统计数据表现最佳,而竞争加权模型则根据总代谢率对竞争者进行加权,对于两个信息量更大的摘要统计数据,其拟合数据的效果略好于其他两个模型。无论使用哪种摘要统计数据,这三个模型在预测丰度分布方面都有很大差异。因此,丰度分布数据将使我们能够更好地相互区分模型,并推断物种相互作用的性质。因此,我们的框架提供了一种概念方法来揭示性状进化背后的物种相互作用,并确定实际中需要的数据。[近似贝叶斯计算;竞争;系统发育;种群动态;模拟;物种相互作用;性状进化。]