Suppr超能文献

疏水去湿作用在门控和跨膜蛋白离子通道调控中的作用。

Hydrophobic dewetting in gating and regulation of transmembrane protein ion channels.

机构信息

Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

J Chem Phys. 2020 Sep 21;153(11):110901. doi: 10.1063/5.0017537.

Abstract

Water is at the heart of almost all biological phenomena, without which no life that we know of would have been possible. It is a misleadingly complex liquid that exists in near coexistence with the vapor phase under ambient conditions. Confinement within a hydrophobic cavity can tip this balance enough to drive a cooperative dewetting transition. For a nanometer-scale pore, the dewetting transition leads to a stable dry state that is physically open but impermeable to ions. This phenomenon is often referred to as hydrophobic gating. Numerous transmembrane protein ion channels have now been observed to utilize hydrophobic gating in their activation and regulation. Here, we review recent theoretical, simulation, and experimental studies that together have started to establish the principles of hydrophobic gating and discuss how channels of various sizes, topologies, and biological functions can utilize these principles to control the thermodynamic properties of water within their interior pores for gating and regulation. Exciting opportunities remain in multiple areas, particularly on direct experimental detection of hydrophobic dewetting in biological channels and on understanding how the cell may control the hydrophobic gating in regulation of ion channels.

摘要

水是几乎所有生物现象的核心,没有水,我们所知的生命就不可能存在。它是一种具有误导性的复杂液体,在环境条件下几乎与气相共存。在疏水性空腔内的限制足以使这种平衡发生变化,从而导致协同去湿转变。对于纳米级的孔,去湿转变导致稳定的干燥状态,该状态在物理上是开放的,但对离子是不可渗透的。这种现象通常被称为疏水性门控。现在已经观察到许多跨膜蛋白离子通道利用疏水性门控来激活和调节。在这里,我们回顾了最近的理论、模拟和实验研究,这些研究共同开始建立疏水性门控的原理,并讨论了各种大小、拓扑和生物学功能的通道如何利用这些原理来控制其内部孔内水的热力学性质,以进行门控和调节。在多个领域仍有令人兴奋的机会,特别是在生物通道中疏水性去湿的直接实验检测以及了解细胞如何控制离子通道调节中的疏水性门控方面。

相似文献

3
Hydrophobic gating in BK channels.BK 通道的疏水性门控。
Nat Commun. 2018 Aug 24;9(1):3408. doi: 10.1038/s41467-018-05970-3.
4
Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.纳米孔和生物通道中的水:分子模拟视角。
Chem Rev. 2020 Sep 23;120(18):10298-10335. doi: 10.1021/acs.chemrev.9b00830. Epub 2020 Aug 25.
5
Functional Annotation of Ion Channel Structures by Molecular Simulation.通过分子模拟对离子通道结构进行功能注释
Structure. 2016 Dec 6;24(12):2207-2216. doi: 10.1016/j.str.2016.10.005. Epub 2016 Nov 17.
6
Hydrophobic gating in ion channels.离子通道中的疏水门控
J Mol Biol. 2015 Jan 16;427(1):121-30. doi: 10.1016/j.jmb.2014.07.030. Epub 2014 Aug 12.

引用本文的文献

8
9
When is a hydrophobic gate not a hydrophobic gate?疏水阀什么时候不是疏水阀?
J Gen Physiol. 2022 Nov 7;154(11). doi: 10.1085/jgp.202213210. Epub 2022 Oct 26.

本文引用的文献

6
Structures of the otopetrin proton channels Otop1 and Otop3.Otopetrin 质子通道 Otop1 和 Otop3 的结构。
Nat Struct Mol Biol. 2019 Jun;26(6):518-525. doi: 10.1038/s41594-019-0235-9. Epub 2019 Jun 3.
9
Conformational transitions of the serotonin 5-HT receptor.5-羟色胺 5-HT 受体的构象转变。
Nature. 2018 Nov;563(7730):275-279. doi: 10.1038/s41586-018-0672-3. Epub 2018 Oct 31.
10
Hydrophobic gating in BK channels.BK 通道的疏水性门控。
Nat Commun. 2018 Aug 24;9(1):3408. doi: 10.1038/s41467-018-05970-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验