Suppr超能文献

炎症表型预测 COVID-19 的临床结局。

Inflammatory phenotyping predicts clinical outcome in COVID-19.

机构信息

School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, LF13A, South Academic Block, Southampton, SO16 6YD, UK.

University Hospitals Southampton NHS Foundation Trust, Southampton, UK.

出版信息

Respir Res. 2020 Sep 22;21(1):245. doi: 10.1186/s12931-020-01511-z.

Abstract

BACKGROUND

The COVID-19 pandemic has led to more than 760,000 deaths worldwide (correct as of 16th August 2020). Studies suggest a hyperinflammatory response is a major cause of disease severity and death. Identitfying COVID-19 patients with hyperinflammation may identify subgroups who could benefit from targeted immunomodulatory treatments. Analysis of cytokine levels at the point of diagnosis of SARS-CoV-2 infection can identify patients at risk of deterioration.

METHODS

We used a multiplex cytokine assay to measure serum IL-6, IL-8, TNF, IL-1β, GM-CSF, IL-10, IL-33 and IFN-γ in 100 hospitalised patients with confirmed COVID-19 at admission to University Hospital Southampton (UK). Demographic, clinical and outcome data were collected for analysis.

RESULTS

Age > 70 years was the strongest predictor of death (OR 28, 95% CI 5.94, 139.45). IL-6, IL-8, TNF, IL-1β and IL-33 were significantly associated with adverse outcome. Clinical parameters were predictive of poor outcome (AUROC 0.71), addition of a combined cytokine panel significantly improved the predictability (AUROC 0.85). In those ≤70 years, IL-33 and TNF were predictive of poor outcome (AUROC 0.83 and 0.84), addition of a combined cytokine panel demonstrated greater predictability of poor outcome than clinical parameters alone (AUROC 0.92 vs 0.77).

CONCLUSIONS

A combined cytokine panel improves the accuracy of the predictive value for adverse outcome beyond standard clinical data alone. Identification of specific cytokines may help to stratify patients towards trials of specific immunomodulatory treatments to improve outcomes in COVID-19.

摘要

背景

COVID-19 大流行已导致全球超过 76 万人死亡(截至 2020 年 8 月 16 日)。研究表明,过度炎症反应是疾病严重程度和死亡的主要原因。识别 COVID-19 患者的过度炎症可能会确定可以从靶向免疫调节治疗中受益的亚组。在 SARS-CoV-2 感染的诊断点分析细胞因子水平可以识别病情恶化的风险患者。

方法

我们使用多重细胞因子测定法测量了 100 名在南安普敦大学医院(英国)住院的确诊 COVID-19 患者入院时的血清 IL-6、IL-8、TNF、IL-1β、GM-CSF、IL-10、IL-33 和 IFN-γ。收集人口统计学、临床和结局数据进行分析。

结果

年龄>70 岁是死亡的最强预测因素(OR 28,95%CI 5.94,139.45)。IL-6、IL-8、TNF、IL-1β 和 IL-33 与不良结局显著相关。临床参数预测不良结局(AUROC 0.71),添加联合细胞因子谱可显著提高预测能力(AUROC 0.85)。在≤70 岁的患者中,IL-33 和 TNF 是不良结局的预测指标(AUROC 分别为 0.83 和 0.84),联合细胞因子谱的添加比单独使用临床参数具有更高的不良结局预测能力(AUROC 分别为 0.92 和 0.77)。

结论

联合细胞因子谱提高了预测不良结局的准确性,超过了单独的标准临床数据。鉴定特定的细胞因子可能有助于将患者分层为特定免疫调节治疗的临床试验,以改善 COVID-19 的结局。

相似文献

引用本文的文献

本文引用的文献

10
COVID-19: consider cytokine storm syndromes and immunosuppression.2019冠状病毒病:考虑细胞因子风暴综合征和免疫抑制。
Lancet. 2020 Mar 28;395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0. Epub 2020 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验